[网络流24题] 方格取数问题(cogs 734)
«问题描述:
在一个有m*n 个方格的棋盘中,每个方格中有一个正整数。现要从方格中取数,使任
意2 个数所在方格没有公共边,且取出的数的总和最大。试设计一个满足要求的取数算法。
«编程任务:
对于给定的方格棋盘,按照取数要求编程找出总和最大的数。
«数据输入:
由文件grid.in提供输入数据。文件第1 行有2 个正整数m和n,分别表示棋盘的行数
和列数。接下来的m行,每行有n个正整数,表示棋盘方格中的数。
«结果输出:
程序运行结束时,将取数的最大总和输出到文件grid.out中。
输入文件示例 输出文件示例
grid.in
3 3
1 2 3
3 2 3
2 3 1
grid.out
11
(1<=N,M<=30)
/*
二分图的最大点权独立集
先按照奇偶性把图分成一个二分图
因为定理:最大点权独立集=V-最小点权覆盖集=V-最小割
所以跑最大流就行了。
*/
#include<cstdio>
#include<iostream>
#define N 1010
#define M 300010
#define inf 1000000000
using namespace std;
int a[][],head[N],dis[N],q[N],n,m,cnt=,S,T,ans;
struct node{
int v,pre,f;
};node e[M];
int ws(int x,int y){
return (x-)*m+y;
}
void add(int u,int v,int f){
e[++cnt].v=v;e[cnt].f=f;e[cnt].pre=head[u];head[u]=cnt;
e[++cnt].v=u;e[cnt].f=;e[cnt].pre=head[v];head[v]=cnt;
}
bool bfs(){
for(int i=;i<=T;i++)dis[i]=inf;
int h=,t=;q[]=S;dis[S]=;
while(h<t){
int now=q[++h];
for(int i=head[now];i;i=e[i].pre){
int v=e[i].v;
if(e[i].f&&dis[v]>dis[now]+){
dis[v]=dis[now]+;
if(v==T)return true;
q[++t]=v;
}
}
}
return dis[T]!=inf;
}
int dinic(int now,int f){
if(now==T)return f;
int rest=f;
for(int i=head[now];i;i=e[i].pre){
int v=e[i].v;
if(e[i].f&&dis[v]==dis[now]+){
int t=dinic(v,min(rest,e[i].f));
if(!t)dis[v]=;
e[i].f-=t;
e[i^].f+=t;
rest-=t;
}
}
return f-rest;
}
int main(){
freopen("grid.in","r",stdin);
freopen("grid.out","w",stdout);
scanf("%d%d",&n,&m);
S=;T=n*m+;
for(int i=;i<=n;i++)
for(int j=;j<=m;j++){
scanf("%d",&a[i][j]);
ans+=a[i][j];
}
for(int i=;i<=n;i++)
for(int j=;j<=m;j++){
if(i+j&) add(ws(i,j),T,a[i][j]);
else add(S,ws(i,j),a[i][j]);
}
for(int i=;i<=n;i++)
for(int j=;j<=m;j++){
if(i+j&)continue;
if(i->=) add(ws(i,j),ws(i-,j),inf);
if(i+<=n) add(ws(i,j),ws(i+,j),inf);
if(j->=) add(ws(i,j),ws(i,j-),inf);
if(j+<=m) add(ws(i,j),ws(i,j+),inf);
}
while(bfs()) ans-=dinic(S,inf);
printf("%d",ans);
return ;
}
[网络流24题] 方格取数问题(cogs 734)的更多相关文章
- AC日记——[网络流24题]方格取数问题 cogs 734
734. [网络流24题] 方格取数问题 ★★☆ 输入文件:grid.in 输出文件:grid.out 简单对比时间限制:1 s 内存限制:128 MB «问题描述: 在一个有m*n ...
- Cogs 734. [网络流24题] 方格取数问题(最大闭合子图)
[网络流24题] 方格取数问题 ★★☆ 输入文件:grid.in 输出文件:grid.out 简单对比 时间限制:1 s 内存限制:128 MB «问题描述: 在一个有m*n 个方格的棋盘中,每个方格 ...
- [网络流24题] 方格取数问题/骑士共存问题 (最大流->最大权闭合图)
洛谷传送门 LOJ传送门 和太空飞行计划问题一样,这依然是一道最大权闭合图问题 “骑士共存问题”是“方格取数问题”的弱化版,本题解不再赘述“骑士共存问题”的做法 分析题目,如果我们能把所有方格的数都给 ...
- luogu2774 [网络流24题]方格取数问题 (最小割)
常见套路:棋盘黑白染色,就变成了一张二分图 然后如果选了黑点,四周的白点就不能选了,也是最小割的套路.先把所有价值加起来,再减掉一个最少的不能选的价值,也就是割掉表示不选 建边(S,黑点i,v[i]) ...
- XTU 二分图和网络流 练习题 C. 方格取数(1)
C. 方格取数(1) Time Limit: 5000ms Memory Limit: 32768KB 64-bit integer IO format: %I64d Java class ...
- [网络流24题] 太空飞行计划(cogs 727)
[问题描述] W 教授正在为国家航天中心计划一系列的太空飞行.每次太空飞行可进行一系列商业性实验而获取利润.现已确定了一个可供选择的实验集合E={E1,E2,-,Em},和进行这些实验需要使用的全部仪 ...
- LibreOJ #6007. 「网络流 24 题」方格取数 最小割 最大点权独立集 最大流
#6007. 「网络流 24 题」方格取数 内存限制:256 MiB时间限制:1000 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: 匿名 提交提交记录统计讨论测试数据 题目描述 ...
- Libre 6007 「网络流 24 题」方格取数 / Luogu 2774 方格取数问题 (网络流,最大流)
Libre 6007 「网络流 24 题」方格取数 / Luogu 2774 方格取数问题 (网络流,最大流) Description 在一个有 m*n 个方格的棋盘中,每个方格中有一个正整数.现要从 ...
- 线性规划与网络流24题●09方格取数问题&13星际转移问题
●(做codevs1908时,发现测试数据也涵盖了1907,想要一并做了,但因为“技术”不佳,搞了一上午) ●09方格取数问题(codevs1907 方格取数3) 想了半天,也没成功建好图: 无奈下 ...
随机推荐
- 459 Repeated Substring Pattern 重复的子字符串
给定一个非空的字符串,判断它是否可以由它的一个子串重复多次构成.给定的字符串只含有小写英文字母,并且长度不超过10000.示例 1:输入: "abab"输出: True解释: 可由 ...
- [转]Entity Framework and SQL Azure
本文转自:https://msdn.microsoft.com/zh-cn/library/gg190738 Julie Lerman http://thedatafarm.com April 201 ...
- [转]Asp.net Mvc2中重构View的三种方式
本文转自:http://www.cnblogs.com/zhuqil/archive/2010/07/14/asp-net-mvc2-view-refactoring.html 我们在Asp.net ...
- iOS开发 - CoreData框架 数据持久化
Core Data Core Data是iOS5之后才出现的一个框架,它提供了对象-关系映射(ORM)的功能,即能够将OC对象转化成数据,保存在SQLite数据库文件中,也能够将保存在数据库中的数据还 ...
- AJPFX: Java基础多线程(一)
多线程是Java学习的非常重要的方面,是每个Java程序员必须掌握的基本技能.本文只是多线程细节.本质的总结,并无代码例子入门,不适合初学者理解.初学者学习多线程,建议一边看书.看博文,以便写代码尝试 ...
- 搞定redis面试--Redis的过期策略?手写一个LRU?
1 面试题 Redis的过期策略都有哪些?内存淘汰机制都有哪些?手写一下LRU代码实现? 2 考点分析 1)我往redis里写的数据怎么没了? 我们生产环境的redis怎么经常会丢掉一些数据?写进去了 ...
- Elasticsearch--集群管理_别名&插件&更新API
目录 使用索引别名 别名 创建别名 修改别名 合并命令 获取所有别名 移除别名 别名中过滤 别名和路由 Elasticsearch插件 基础知识 安装插件 移除插件 更新设置API 使用索引别名 通过 ...
- android ListView 分析(一)
需要了解的内容 1. listview中的getItemAtPosition与Adapter的getItem的position的区别 listView中的getItemAtPosit ...
- iOS Programming View Controllers 视图控制器
iOS Programming View Controllers 视图控制器 1.1 A view controller is an instance of a subclass of UIVi ...
- SQLServer性能优化专题
SQLServer性能优化专题 01.SQLServer性能优化之----强大的文件组----分盘存储(水平分库) http://www.cnblogs.com/dunitian/p/5276431. ...