把式子化简一波。

发现一个比较厉害的性质:每个点只能影响到行列下标$gcd$与它相同的点。

然后就可以计算$\sum_{g<=k}f(g,g)*\sum_{i<=k}\sum_{j<=k}[gcd(i,j)==g](i/g)*(i/g)$

然后考虑它的意义,直接发现计算出$i*i*\phi(i)$的前缀和就可以下界函数分块计算了。

这样子还是过不了。考虑修改次数比较少,考虑分块维护,就可以$O(1)$查询了。

复杂度$m\sqrt {n}$

#include <map>
#include <cmath>
#include <queue>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
#define F(i,j,k) for (ll i=j;i<=k;++i)
#define D(i,j,k) for (ll i=j;i>=k;--i)
#define ll long long
#define mp make_pair const ll md=1000000007; void Finout()
{
freopen("table.in","r",stdin);
freopen("table.out","w",stdout);
} #define maxn 10000001
int a[maxn],phi[maxn],f[maxn];
int vis[maxn],pri[maxn],top=0,m,n; ll Getll()
{
ll x=0,f=1; char ch=getchar();
while (ch<'0'||ch>'9') {if (ch=='-') f=-1; ch=getchar();}
while (ch>='0'&&ch<='9') {x=x*10+ch-'0'; ch=getchar();}
return x*f;
} void Shaker()
{
phi[1]=1;
F(i,2,n)
{
if (!vis[i]) pri[++top]=i,phi[i]=i-1;
for (ll j=1;j<=top&&(ll)i*pri[j]<=(ll)n;++j)
{
vis[i*pri[j]]=1;
if (i%pri[j]==0)
{
phi[i*pri[j]]=phi[i]*pri[j];
break;
}
else phi[i*pri[j]]=phi[i]*phi[pri[j]];
}
}
F(i,1,maxn-1) phi[i]=phi[i]*i%md*i%md+phi[i-1],phi[i]%=md;
} int sum[50005],pre[maxn];
int L[50005],R[50005],bel[maxn],T,tot=0; void add(ll x,ll d)
{
F(i,x,R[bel[x]])
{
pre[i]+=d,pre[i]%=md;
}
F(i,bel[x],tot)
{
sum[i]+=d,sum[i]%=md;
}
} ll gs(ll x)
{
if (x==0) return 0;
ll ret=0;
ret=sum[bel[x]-1]+pre[x];
ret%=md;
return ret;
} ll gcd(ll a,ll b)
{return b==0?a:gcd(b,a%b);} ll cal(ll k)
{
ll ret=0;
for (ll i=1,last=0;i<=k;i=last+1)
{
last=k/(k/i);
ret+=phi[k/last]*((gs(last)-gs(i-1))%md);
ret%=md;
}
return (ret+md)%md;
} void init()
{
T=sqrt(n); //printf("Block Size is %d\n",T);
for (ll i=1;i<=n;i+=T)
{
L[++tot]=i;
R[tot]=i+T-1;
}
R[tot]=n;
F(i,1,tot) F(j,L[i],R[i]) bel[j]=i;
} int main()
{
m=Getll();n=Getll();
init();
Shaker();
F(i,1,n) a[i]=((ll)i*i)%md;
F(i,1,n) (a[i]+=a[i-1])%=md;
F(i,1,tot) sum[i]=a[R[i]];
F(i,1,tot)
{
pre[L[i]]=(a[L[i]]-a[L[i]-1])%md;
F(j,L[i]+1,R[i]) pre[j]=(pre[j-1]+a[j]-a[j-1])%md;
}
sum[0]=0;
F(i,1,m)
{
ll a,b,k,x;
a=Getll();b=Getll();x=Getll();k=Getll();
ll g=gcd(a,b);
add(g,-gs(g)+gs(g-1));
ll tmp=x/(a/g)/(b/g);
tmp%=md;
add(g,tmp);
printf("%lld\n",cal(k));
}
}

  

BZOJ 4815 [Cqoi2017]小Q的表格 ——欧拉函数的更多相关文章

  1. BZOJ 4815 CQOI2017 小Q的表格 欧拉函数+分块

    题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=4815 题意概述:要认真概述的话这个题就出来了... 分析: 首先分析题目,认真研究一下修 ...

  2. bzoj 4815: [Cqoi2017]小Q的表格 [数论]

    4815: [Cqoi2017]小Q的表格 题意: 单点修改,查询前缀正方形和.修改后要求满足条件f(a,b)=f(b,a), b×f(a,a+b)=(a+b)*f(a,b) 一开始sb了认为一次只会 ...

  3. bzoj 4815: [Cqoi2017]小Q的表格【欧拉函数+分块】

    参考:http://blog.csdn.net/qq_33229466/article/details/70174227 看这个等式的形式就像高精gcd嘛-所以随便算一下就发现每次修改(a,b)影响到 ...

  4. bzoj 4815 [Cqoi2017]小Q的表格——反演+分块

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4815 大概就是推式子的时候注意有两个边界都是 n ,考虑变成 2*... 之类的. 分块维护 ...

  5. 4815: [Cqoi2017]小Q的表格 莫比乌斯反演 分块

    (Updated 2018.04.28 : 发现公式效果不好,重新处理图片)国际惯例的题面:看到这两个公式,很多人都会想到与gcd有关.没错,最终的结论就是f(a,b)=f(gcd(a,b))*(a/ ...

  6. [BZOJ4815][CQOI2017]小Q的表格(莫比乌斯反演)

    4815: [Cqoi2017]小Q的表格 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 832  Solved: 342[Submit][Statu ...

  7. 【BZOJ4815】[CQOI2017]小Q的表格(莫比乌斯反演,分块)

    [BZOJ4815][CQOI2017]小Q的表格(莫比乌斯反演,分块) 题面 BZOJ 洛谷 题解 神仙题啊. 首先\(f(a,b)=f(b,a)\)告诉我们矩阵只要算一半就好了. 接下来是\(b* ...

  8. 洛咕 P3700 [CQOI2017]小Q的表格

    洛咕 P3700 [CQOI2017]小Q的表格 神仙题orz 首先推一下给的两个式子中的第二个 \(b\cdot F(a,a+b)=(a+b)\cdot F(a,b)\) 先简单的想,\(F(a,a ...

  9. [bzoj4815] [洛谷P3700] [Cqoi2017] 小Q的表格

    Description 小Q是个程序员. 作为一个年轻的程序员,小Q总是被老C欺负,老C经常把一些麻烦的任务交给小Q来处理. 每当小Q不知道如何解决时,就只好向你求助.为了完成任务,小Q需要列一个表格 ...

随机推荐

  1. iOS 自适应高度,改变字体颜色

    #define kMainBoundsWidth ([UIScreen mainScreen].bounds).size.width //屏幕的宽度 #define kFont [UIFont sys ...

  2. (转)ASIC设计中各个阶段需要注意的问题——节选

    ASIC 的复杂性不断提高,同时工艺在不断地改进,如何在较短的时间内开发一个稳定的可重用的ASIC芯片的设计,并且一次性流片成功,这需要一个成熟的ASIC 的设计方法和开发流程.本文结合NCveril ...

  3. sqlserver中drop、truncate和delete语句的用法

    虽然小编不建议大家去用命令删除数据库表中的东西,但是这些删除命令总有用的着的地方. 说到删除表数据的关键字,大家记得最多的可能就是delete了 然而我们做数据库开发,读取数据库数据.对另外的两兄弟用 ...

  4. SWTError: No more handles [gtk_init_check() failed] running platform tests (on Linux)

    http://www.lemmster.de/2013-12-19-swterror-no-more-handles-gtk_init_check-failed-running-platform-te ...

  5. ajax上传文件以及使用中常见问题处理

    <script src="/scripts/ajaxfileupload.js"></script> <script src="/scrip ...

  6. Scrapy-架构

    Scrapy架构(各组件的功能)及Scrapy引擎控制数据流的过程 1. Scrapy架构图(绿线是数据流向): □ Scrapy引擎(Engine):引擎负责控制数据流在系统的所有组件中流动,并在相 ...

  7. QT +自定义控件-spin+slider

    动手实现自定义控件: 1.首先在ui界面中添加一个(Widget)容器类.如图中的1所示 2.在项目中添加一个SmallWidget类,如下: 3.接着在程序编辑界面进行程序编辑如下: #includ ...

  8. vs编译obj给delphi用

    Cl /O2  /c  bjhash.cpp  记得cl x32 和cl x64的区别

  9. scanf函数详解

    函数名: scanf 功 能: 执行格式化输入 用 法: int scanf(char *format[,argument,...]);scanf()函数是通用终端格式化输入函数,它从标准输入设备(键 ...

  10. jdk concurrent 中 AbstractQueuedSynchronizer uml 图.

    要理解 ReentrantLock 先理解AbstractQueuedSynchronizer 依赖关系. 2