链接:

http://acm.hdu.edu.cn/showproblem.php?pid=1081

这道题使用到的算法是:预处理+最大连续子串和

如果会做最大连续子串和,那么理解这题就相对简单一些,若不知道最大连续子串和,建议先看一下这两题:

http://acm.hdu.edu.cn/showproblem.php?pid=1003

http://www.cnblogs.com/YY56/p/4855766.html

To The Max

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 10107    Accepted Submission(s): 4864

Problem Description
Given a two-dimensional array of positive and negative integers, a sub-rectangle is any contiguous sub-array of size 1 x 1 or greater located within the whole array. The sum of a rectangle is the sum of all the elements in that rectangle. In this problem the sub-rectangle with the largest sum is referred to as the maximal sub-rectangle.

As an example, the maximal sub-rectangle of the array:

0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2

is in the lower left corner:

9 2
-4 1
-1 8

and has a sum of 15.

 
Input
The input consists of an N x N array of integers. The input begins with a single positive integer N on a line by itself, indicating the size of the square two-dimensional array. This is followed by N 2 integers separated by whitespace (spaces and newlines). These are the N 2 integers of the array, presented in row-major order. That is, all numbers in the first row, left to right, then all numbers in the second row, left to right, etc. N may be as large as 100. The numbers in the array will be in the range [-127,127].
 
Output
Output the sum of the maximal sub-rectangle.
 
Sample Input
4
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1
8 0 -2
 
Sample Output
15
 
之前一直不理解虽知道是dp,却不知这是从何而来的,如何计算,

代码1:

#include<stdio.h>
#include<string.h>
#include<stdlib.h> #define N 200
#define oo 0x3f3f3f3f int a[N][N], dp[N][N]; int main()
{
int n; while(scanf("%d", &n)!=EOF)
{
int i, j, j1, j2; memset(dp, , sizeof(dp));
for(i=; i<=n; i++)
for(j=; j<=n; j++)
{
scanf("%d", &a[i][j]);
dp[i][j] = dp[i][j-] + a[i][j]; /// dp[i][j] i 代表的是第 i 行,j 代表的是这行前 j 个数的和
} int S = ;
for(j1=; j1<=n; j1++)
for(j2=j1; j2<=n; j2++)
{ /** * i 很明显代表的是行数
* j1 从第几列开始
* j2 从第几列结束 **/ int mx=, my=; for(i=; i<=n; i++)
{
mx += dp[i][j2] - dp[i][j1-]; /// mx 代表的是前 i 行里,从第j1-1列到j2列的和(相当于矩阵了) if(mx>=)
{
if(mx>my) my = mx; /// my 记录的是前 i 行里,从第j1-1列到第j2列矩阵的最大和
}
else mx = ;
}
if(my>=S) S = my; /// S 里面存的肯定是在所有矩阵中取最大值
} printf("%d\n", S);
} return ;
}

代码2:

#include<stdio.h>
#include<string.h>
#include<stdlib.h>
#define max2(a,b) (a>b?a:b) #define N 110
#define INF 0xfffffff int a[N][N], b[N][N][N]; int main()
{
int n;
while(scanf("%d", &n)!=EOF)
{
int i, j, k, x, max1; memset(a, , sizeof(a));
memset(b, , sizeof(b)); for(i=; i<=n; i++)
for(j=; j<=n; j++)
scanf("%d", &a[i][j]); max1=-INF;
for(i=; i<=n; i++)
for(j=; j<=n; j++)
for(x=, k=j; k>; k--)
{
x += a[i][k]; b[i][j][k] = max2(b[i][j][k], b[i-][j][k]) + x; if(b[i][j][k]>max1)
max1 = b[i][j][k];
} printf("%d\n", max1);
}
return ;
}

题目比较水暴力也可以过

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std; #define met(a,b) (memset(a,b,sizeof(a)))
#define N 110
#define INF 0xffffff int a[N][N], sum[N][N]; int main()
{
int n; while(scanf("%d", &n)!=EOF)
{
int i, j, i1, j1, Max=-INF; met(a, );
met(sum, ); for(i=; i<=n; i++)
for(j=; j<=n; j++)
{
scanf("%d", &a[i][j]);
} for(i=; i<=n; i++)
for(j=; j<=n; j++)
sum[i][j] = sum[i-][j]+sum[i][j-]-sum[i-][j-] + a[i][j]; for(i=; i<=n; i++)
for(j=; j<=n; j++)
for(i1=i+; i1<=n; i1++)
for(j1=j+; j1<=n; j1++)
{
Max = max(Max, sum[i1][j1]-sum[i1][j]-sum[i][j1]+sum[i][j]);
} printf("%d\n", Max);
}
return ;
}

(DP)To The Max --HDU -- 1081的更多相关文章

  1. 2017百度之星资格赛 1003:度度熊与邪恶大魔王(DP)

    .navbar-nav > li.active > a { background-image: none; background-color: #058; } .navbar-invers ...

  2. Tour(dp)

    Tour(dp) 给定平面上n(n<=1000)个点的坐标(按照x递增的顺序),各点x坐标不同,且均为正整数.请设计一条路线,从最左边的点出发,走到最右边的点后再返回,要求除了最左点和最右点之外 ...

  3. 最长公共子序列长度(dp)

    /// 求两个字符串的最大公共子序列长度,最长公共子序列则并不要求连续,但要求前后顺序(dp) #include <bits/stdc++.h> using namespace std; ...

  4. Leetcode之动态规划(DP)专题-474. 一和零(Ones and Zeroes)

    Leetcode之动态规划(DP)专题-474. 一和零(Ones and Zeroes) 在计算机界中,我们总是追求用有限的资源获取最大的收益. 现在,假设你分别支配着 m 个 0 和 n 个 1. ...

  5. Leetcode之动态规划(DP)专题-198. 打家劫舍(House Robber)

    Leetcode之动态规划(DP)专题-198. 打家劫舍(House Robber) 你是一个专业的小偷,计划偷窃沿街的房屋.每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互 ...

  6. Leetcode之动态规划(DP)专题-121. 买卖股票的最佳时机(Best Time to Buy and Sell Stock)

    Leetcode之动态规划(DP)专题-121. 买卖股票的最佳时机(Best Time to Buy and Sell Stock) 股票问题: 121. 买卖股票的最佳时机 122. 买卖股票的最 ...

  7. Leetcode之动态规划(DP)专题-122. 买卖股票的最佳时机 II(Best Time to Buy and Sell Stock II)

    Leetcode之动态规划(DP)专题-122. 买卖股票的最佳时机 II(Best Time to Buy and Sell Stock II) 股票问题: 121. 买卖股票的最佳时机 122. ...

  8. Leetcode之动态规划(DP)专题-123. 买卖股票的最佳时机 III(Best Time to Buy and Sell Stock III)

    Leetcode之动态规划(DP)专题-123. 买卖股票的最佳时机 III(Best Time to Buy and Sell Stock III) 股票问题: 121. 买卖股票的最佳时机 122 ...

  9. Leetcode之动态规划(DP)专题-188. 买卖股票的最佳时机 IV(Best Time to Buy and Sell Stock IV)

    Leetcode之动态规划(DP)专题-188. 买卖股票的最佳时机 IV(Best Time to Buy and Sell Stock IV) 股票问题: 121. 买卖股票的最佳时机 122. ...

随机推荐

  1. spark on es 多索引查询

    核心接口 trait SparkOnEsService { val conf = new SparkConf // conf.setMaster("local[10]") val ...

  2. VB中Excel 2010的导入导出操作

    VB中Excel 2010的导入导出操作 编写人:左丘文 2015-4-11 近来这已是第二篇在讨论VB的相关问题,今天在这里,我想与大家一起分享一下在VB中如何从Excel中导入数据和导出数据到Ex ...

  3. week3-栈和队列

    1.学习总结 2.PTA实验作业 2.1 题目1:7-1 jmu-报数游戏 2.2 设计思路(伪代码或流程图) 2.3 代码截图 2.4 PTA提交列表说明. 答案错误:error少了 !: 非零返回 ...

  4. python + docker, 实现天气数据 从FTP获取以及持久化(二)-- python操作MySQL数据库

    前言 在这一节中,我们主要介绍如何使用python操作MySQL数据库. 准备 MySQL数据库使用的是上一节中的docker容器 “test-mysql”. Python 操作 MySQL 我们使用 ...

  5. 关于Android App开发知识体系的一个小总结

     前言 本文从热更新.异步并发.性能优化.网络请求等多个方面对Android App开发的知识体系进行了一个分类总结.欢迎大家沟通交流. 热更新 [原]热更新开源项目Tinker源码解析之Dex热更新 ...

  6. 熟悉下apple 马甲包

    一.什么是马甲包 马甲包是利用App store 规则漏洞,通过技术手段,多次上架同一款产品的方法.马甲包和主产品包拥有同样的内容和功能,除了icon和应用名称不能完全一致,其他基本一致. 二.为什么 ...

  7. upstream prematurely closed connection while reading response header from upstream

    upstream prematurely closed connection while reading response header from upstream nginx配置uwsgi的时候  ...

  8. YII 自带验证码实现

    共三步,分别controllers,models,views各一层添置一行代码即可实现 第一步在controllers添加 public function actions() { return arr ...

  9. 阻止后续事件的发生 onclick 双return 事件绑定(..$).click一个return

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  10. Nginx 文件下载资源配置

    下面配置是针对所有.apk文件下载 本人 需要.apk文件 放在Linux里面作为下载, 放在/root目录下面出现403 Forbinden, (暂时不清楚), 放在其他目录正常 然后新建目录/re ...