目录

前言:发现最近都没怎么写博客,,,赶紧发篇以前记的笔记凑凑数

卷积

卷积定义:

  如果有数论函数\(f, g\), 那么它们卷积的第\(n\)项为\((f * g) (n)\),设这个卷出来的新函数为h,那么有
  \[h(n) = \sum_{k | n} f(k) g(n / k) = \sum_{ij = n}f(i) g(j)\]
  

一些性质:

  1,积性函数的卷积还是积性函数
  证明: 现有\(f, g\)为积性函数,且\(gcd(p, q) == 1\),求证\(h(p) \cdot h(q) = h(qp).\)
  \[h(p) \cdot h(q) = \sum_{ab = p}f(a) g(b) \cdot \sum_{cd = q}f(c) g(d)\]
  \[= \sum_{a} f(a) g(\frac{p}{a}) \sum_{c} f(c) g(\frac{q}{c})\]
  \[= \sum_{a} \sum_{c} f(a) f(c) g(\frac{p}{a}) g(\frac{q}{c})\]
  \[= \sum_{a} \sum_{c} f(ac) g(\frac{pq}{ac})\]
  因为\(ac \cdot \frac{pq}{ac} = pq\),所以
  \[\sum_{a} \sum_{c} f(ac)g(\frac{pq}{ac}) = \sum_{ac | pq} f(ac)g(\frac{pq}{ac})\]
  \[= \sum_{x|pq}f(x)g(\frac{pq}{x}) = h(pq)\]
  

常见狄利克雷卷积:

\(id = \phi * 1\)
\(d = 1 * 1\)
\(\sigma = id * 1\)
\(e = 1 * \mu\)
\(\phi = id * \mu\)
  

有趣的事情:

  1,FFT(多项式乘法)就是在求卷积。
    可以把\(f,g\)分别看做两个多项式,\(f(i)\)表示\(x^i\)的系数,\(g(i)\)同理。
    那么卷出来的\(h(i)\)就等于两式相乘后\(x^{i}\)的系数,因为卷积定义里面\(h(k)\)就要加上满足\(ij = k\)的\(f(i) g(j)\).

杜教筛

目的:在低于线性的时间内求积性函数前缀和

算法:

  设\(S(n) = \sum_{i = 1}^{n}f_{i}\).
  设有一个积性函数\(g(i)\).则:
  \[\sum_{i = 1}^{n}(g * f)(i) = \sum_{i = 1}^{n} \sum_{d | i} g(d)f(\frac{i}{d})\]
  因为当\(d | i\)时会统计到\(g(d)f(\frac{i}{d})\),因此直接枚举\(d\)和\(i = \frac{i}{d}\),\(i\)的最大值为\(\frac{n}{d}\),因为要满足\(i \cdot d \le n\).所以:
  \[原式= \sum_{d = 1}^{n}g(d) \sum_{i = 1}^{\frac{n}{d}}f(i) = \sum_{d = 1}^{n}g(d)S(\frac{n}{d})\]
  所以:
  \[\sum_{i = 1}^{n}(g * f)(i) = \sum_{d = 1}^{n}g(d)S(\frac{n}{d})\]
  
  因为我们有:
  \[g(1)S(n) = \sum_{i = 1}^{n}g(i)S(\frac{n}{i}) - \sum_{i = 2}^{n}g(i)S(\frac{n}{i})\]
  带入上式得:
  \[g(1)S(n) = \sum_{i = 1}^{n}(g * f)(i) - \sum_{i = 2}^{n}g(i)S(\frac{n}{i})\]
  因此我们只需要找到一个合适的\(g\),带入上式,使得\(\sum_{i = 1}^{n}(g * f)(i)\)可以快速计算,那么就只需要对\(\sum_{i = 2}^{n}g(i)S(\frac{n}{i})\)进行求解就可以得到\(S(n)\),而这个式子中的\(S(\frac{n}{i})\)是可以整数分块求的。
  于是就可以做到\(O(n^{\frac{3}{4}})\)求解了。
  同时为了降低复杂度,可以先预处理一部分\(S\)值。通过证明可得:设我们当前预处理了前\(k\)个S,那么当\(k\)取到\(n^{\frac{2}{3}}\)时可以使得整体复杂度降为\(n^{\frac{2}{3}}\).(后面部分记忆化求解)
  
  关于记忆化:
  1,可以使用map/hash解决。
  2,或者观察到对于同一个\(S(n)\),我们所有要求的\(S\)值都是形如\(S(\frac{n}{x})\)的,并且我们知道\(\lfloor{ \frac{\lfloor{\frac{n}{x}}\rfloor}{y} }\rfloor = \lfloor {\frac{n}{xy}} \rfloor\),因此对于同一个\(n\),我们求的所有\(S(x)\)都可以表示为\(S(\frac{n}{x})\),因此设\(now = \frac{n}{x}\)。那么:
    1,对于\(now <= n^{\frac{2}{3}}\),我们已经预处理出来了。
    2,对于\(now > n^{\frac{2}{3}}\),因为\(now > n^{\frac{2}{3}}\),所以\(x = \frac{n}{now} <= n ^ {\frac{1}{3}}\),因此我们可以令\(sum[x] = S(\frac{n}{x})\)。即若我们有\(S(now)\) 其中$now > n ^ {\frac{2}{3}} $,那么我们可以把这个值存入 \(sum[\frac{n}{now}]\).
    注意:但这样的话,虽然减少一个log,但若有多个不同n值,则每次处理一个新的n值时就需要清空S数组。
    因为虽然对于同一个n值,我们要求的所有S的下标都可以表示为 \(\frac{n}{x}\),但不是任意一个数都可以被表示为 \(\frac{n}{x}\) 的,
    如果这个时候的另一个\(n\)恰好不能被表示,那么答案就会出错

卷积 & 杜教筛的更多相关文章

  1. 中国剩余定理 & 欧拉函数 & 莫比乌斯反演 & 狄利克雷卷积 & 杜教筛

    ssplaysecond的博客(请使用VPN访问): 中国剩余定理: https://ssplaysecond.blogspot.jp/2017/04/blog-post_6.html 欧拉函数: h ...

  2. 洛谷P3768 简单的数学题(莫比乌斯反演+狄利克雷卷积+杜教筛)

    传送门 不会…… 两篇加在一起都看不懂…… https://www.cnblogs.com/cellular-automaton/p/8241128.html https://www.luogu.or ...

  3. [基本操作] Mobius 反演, Dirichlet 卷积和杜教筛

    Dirichlet 卷积是两个定义域在正整数上的函数的如下运算,符号为 $*$ $(f * g)(n) = \sum_{d|n}f(d)g(\frac{n}{d})$ 如果不强调 $n$ 可简写为 $ ...

  4. 【Bzoj3944】杜教筛模板(狄利克雷卷积搞杜教筛)

    题目链接 哇杜教筛超炫的 有没有见过$O(n^\frac{2}{3})$求欧拉函数前缀和的算法?没有吧?蛤蛤蛤 首先我们来看狄利克雷卷积是什么 首先我们把定义域是整数,陪域是复数的函数叫做数论函数. ...

  5. 我也不知道什么是"莫比乌斯反演"和"杜教筛"

    我也不知道什么是"莫比乌斯反演"和"杜教筛" Part0 最近一直在搞这些东西 做了将近超过20道题目吧 也算是有感而发 写点东西记录一下自己的感受 如果您真的 ...

  6. 【Luogu3768】简单的数学题(莫比乌斯反演,杜教筛)

    [Luogu3768]简单的数学题(莫比乌斯反演,杜教筛) 题面 洛谷 \[求\sum_{i=1}^n\sum_{j=1}^nijgcd(i,j)\] $ n<=10^9$ 题解 很明显的把\( ...

  7. 【BZOJ3944】Sum(杜教筛)

    [BZOJ3944]Sum(杜教筛) 题面 求\[\sum_{i=1}^n\mu(i)和\sum_{i=1}^n\phi(i)\] 范围:\(n<2^{31}\) 令\[S(n)=\sum_{i ...

  8. 杜教筛:Bzoj3944: sum

    题意 求\(\sum_{i=1}^{n}\varphi(i)和\sum_{i=1}^{n}\mu(i)\) \(n <= 2^{31}-1\) 不会做啊... 只会线性筛,显然不能线性筛 这个时 ...

  9. 杜教筛进阶+洲阁筛讲解+SPOJ divcnt3

    Part 1:杜教筛进阶在了解了杜教筛基本应用,如$\sum_{i=1}^n\varphi(i)$的求法后,我们看一些杜教筛较难的应用.求$\sum_{i=1}^n\varphi(i)*i$考虑把它与 ...

随机推荐

  1. Ajax在Django中的应用

    一.什么是Ajax AJAX(Asynchronous Javascript And XML)翻译成中文就是“异步Javascript和XML”.即使用Javascript语言与服务器进行异步交互,传 ...

  2. IBM X3650M4简单排错方法

    如果出问题了,首先看开机的那个地方的灯是否显示正常,有黄色的灯亮一般都不正常: 这种服务器带有一个错误指示板,只需要在电源开关那,如上图,把那个蓝色的按钮往里面按,就能把里面的一个板子抽出来,可以看到 ...

  3. hive 日志

    hive中日志分为两种: 1 系统日志,记录hive运行情况,错误状态 2 job日志 , 记录hive中 job执行的历史过程 系统日志存储位置: 配置在 hive/conf/hive-log4j. ...

  4. 真香!iOS云真机全新上线!

    WeTest 导读 众多开发者已经渐渐适应通过调用线上的安卓真机进行远程调试,但是针对iOS设备,则依然存在“iOS设备昂贵”“无法及时采购iOS最新设备”“无法复现iOS历史系统版本”等问题. 为了 ...

  5. python接口自动化1-发送get请求 前言

    前言 requests模块,也就是老污龟,为啥叫它老污龟呢,因为这个官网上的logo就是这只污龟,接下来就是学习它了. 一.环境安装 1.用pip安装requests模块 >>pip in ...

  6. 001 -js对时间日期的排序

    001-JS对时间日期的排序 最近在做公司的项目时间,产品给了一个很简单的页面,让帮忙写一下.首先看一下产品的需求: 需要对该列表进行排序 思路:(1)可以在数据库写sql语句的时间直接一个DESC按 ...

  7. IO多路复用(一)-- Select、Poll、Epoll

    在上一篇博文中提到了五种IO模型,关于这五种IO模型可以参考博文IO模型浅析-阻塞.非阻塞.IO复用.信号驱动.异步IO.同步IO,本篇主要介绍IO多路复用的使用和编程. IO多路复用的概念 多路复用 ...

  8. 亚马逊中国耳机巨头Jabra官方旗舰店上线

    日前,亚马逊中国(Z.cn)宣布,全球无线技术顶级领导品牌 Jabra (捷波朗)官方旗舰店正式上线,产品品类涵盖蓝牙耳机.音乐耳机.无线音箱和车载系列产品.Jabra 旗舰店上线伊始便汇集了 60 ...

  9. ES6的新特性(16)——Generator 函数的语法

    Generator 函数的语法 简介 基本概念 Generator 函数是 ES6 提供的一种异步编程解决方案,语法行为与传统函数完全不同.本章详细介绍 Generator 函数的语法和 API,它的 ...

  10. 随机生成30道四则运算题NEW

    代码: #include <iostream> #include <time.h> using namespace std; void main() { srand((int) ...