1222 信与信封问题

 时间限制: 1 s
 空间限制: 128000 KB
 题目等级 : 钻石 Diamond
 
 
题目描述 Description

John先生晚上写了n封信,并相应地写了n个信封将信装好,准备寄出。但是,第二天John的儿子Small John将这n封信都拿出了信封。不幸的是,Small John无法将拿出的信正确地装回信封中了。

将Small John所提供的n封信依次编号为1,2,…,n;且n个信封也依次编号为1,2,…,n。假定Small John能提供一组信息:第i封信肯定不是装在信封j中。请编程帮助Small John,尽可能多地将信正确地装回信封。

输入描述 Input Description

n文件的第一行是一个整数n(n≤100)。信和信封依次编号为1,2,…,n。

n接下来的各行中每行有2个数i和j,表示第i封信肯定不是装在第j个信封中。文件最后一行是2个0,表示结束。

输出描述 Output Description

输出文件的各行中每行有2个数i和j,表示第i封信肯定是装在第j个信封中。请按信的编号i从小到大顺序输出。若不能确定正确装入信封的任何信件,则输出“none”。

样例输入 Sample Input

3

1  2

1  3

2  1

0  0

样例输出 Sample Output

1   1

/*
开始把边取反,然后跑一边匈牙利算法,然后判断是不是完美匹配(概念网上自己去找),不是就直接输出none;
第二步每次删掉一条边,判断是不是完美匹配,不是就输出这个两个点;
第二步跑完之后没有发现有一个是可以输出的,就输出none;
*/
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cmath> #define N 555 using namespace std;
int mx[N],Li[N],head[N];
int n,cut_x,cut_y,S[N],T[N],num,flag=;
bool vis[N],k[N][N];
struct node
{
int u;
int to;
int next;
} e[N<<]; void add(int u,int to)
{
e[++num].to=to;e[num].next=head[u];head[u]=num;
} int dfs(int x)
{
int v;
for (int i=head[x];i!=;i=e[i].next)
{
v=e[i].to;
if(x==cut_x && v==cut_y) continue;
if(vis[v]==true) continue;
vis[v]=true;
if(Li[v]== || dfs(Li[v]) )
{
mx[x]=v;
Li[v]=x;
return ;
}
}
return ;
} int maxmatch()
{
int ans=;
for (int i=;i<=n;i++)
{
for (int j=;j<=n;j++) vis[j]=false;
ans+=dfs(i);
}
return ans;
} void Impotant_edge()
{
int ans;
for (int i=;i<=n;i++)
{
S[i]=i;T[i]=mx[i];
}
for (int i=;i<=n;i++)
{
cut_x=S[i];cut_y=T[i];
for (int j=;j<=n;j++) mx[j]=,Li[j]=;
ans=maxmatch();
if (ans!=n)
{
printf("%d %d\n",cut_x,cut_y);
flag=;
}
}
return;
} int main()
{
int ans,x,y;
scanf("%d",&n);
while()
{
scanf("%d%d",&x,&y);
if (x==&&y==) break;
k[x][y]=;
}
for(int i=; i<=n; i++)
for(int j=; j<=n; j++)
if( k[i][j]== ) add(i,j);
ans=maxmatch();
if (ans!=n)
{
cout<<"none"<<endl;
return ;
}
else
{
Impotant_edge();
if (flag==) cout<<"none"<<endl;
return ;
}
}

codevs1222 信与信封问题的更多相关文章

  1. CODEVS1222 信与信封问题 (匈牙利算法)

    先做一遍匈牙利算法.对于已经匹配的边,如果删去之后还能最大匹配数增加,则不符合要求. 一遍匈牙利算法是O(n^3)的,对于每一条边做n次,每次O(n^2),总的复杂度是O(n^3). 注意:不要忘记输 ...

  2. codevs1222 信与信封的问题

    二分图匹配. 先匹配一次,一定是完美匹配.然后枚举每条边,去掉它,若是不能完美匹配,这条边就必须. #include<cstdio> #include<cstring> #in ...

  3. 信与信封问题(codevs 1222)

    题目描述 Description John先生晚上写了n封信,并相应地写了n个信封将信装好,准备寄出.但是,第二天John的儿子Small John将这n封信都拿出了信封.不幸的是,Small Joh ...

  4. 【wikioi】1222 信与信封问题(二分图+特殊的技巧)

    http://wikioi.com/problem/1222/ 一开始我就想到这样构图的,即可能的连边.但是似乎无法判断. 然后想来想去想不出来.. 题解: 同样是二分图,将可能的连边,然后跑一次最大 ...

  5. WIKIOI 1222信与信封问题

    题目描述 Description John先生晚上写了n封信,并相应地写了n个信封将信装好,准备寄出.但是,第二天John的儿子Small John将这n封信都拿出了信封.不幸的是,Small Joh ...

  6. Codevs 1222 信与信封问题 二分图匹配,匈牙利算法

    题目: http://codevs.cn/problem/1222/ 1222 信与信封问题   时间限制: 1 s   空间限制: 128000 KB   题目等级 : 钻石 Diamond 题解 ...

  7. codevs 1222 信与信封问题(二分图的完美匹配)

    1222 信与信封问题   题目描述 Description John先生晚上写了n封信,并相应地写了n个信封将信装好,准备寄出.但是,第二天John的儿子Small John将这n封信都拿出了信封. ...

  8. codevs 1222 信与信封问题

    /* 二分图 题目给出的是确定不连通的边 如果我们拿剩下的可能联通也可能不连通的边跑最大匹配 如果不是完美非配 也就是说把所有可能的边都认为是一定的 这样都跑不出来(不能匹配到每个点)那么一定不能确定 ...

  9. FZU 1202 信与信封问题 二分图匹配

    找匹配中的关键边. 做法: 拆掉一条匹配边,然后对边两边的点做一次增广,如果可以增广,那么此边不是关键边,否则是关键边. 详情可以参见:http://www.docin.com/p-109868135 ...

随机推荐

  1. docloud后台管理项目(前端篇)

    以下内容与主题无关,如果不想看可以直接忽视 !--忽视开始--! 给大家推荐一款强大的编辑器,那就是集响应快.体验好.逼格高.功能丰富为一体的sublime text 3.它除了以上特点,还有一个最重 ...

  2. CAD取Excel表格(com接口)

    1 2 3 4 5 6 7 8 9 10 11 12 MxDrawResbuf ret = (MxDrawResbuf)axMxDrawX1.Call("ExApp_GetExcel&quo ...

  3. vue03 axios

    4. 通过axios实现数据请求 vue.js默认没有提供ajax功能的. 所以使用vue的时候,一般都会使用axios的插件来实现ajax与后端服务器的数据交互. 注意,axios本质上就是java ...

  4. 【原创】使用HTML5+canvas+JavaScript开发的原生中国象棋游戏及源码分享

    目前已经实现的功能: V1.0 : 实现棋子的布局,画布及游戏场景的初始化V2.0 : 实现棋子的颜色改变V3.0 :实现所有象棋的走棋规则V4.0 : 实现所有棋子的吃子功能 GItHub源码下载地 ...

  5. [Luogu] P3907 圈的异或

    题目描述 给出无向图G,边 (Ai,Bi)的权是Ci,判断下列性质是否成立: 对于任意圈C,其边权的异或和是0 输入输出格式 输入格式: 第1 行,1 个整数T,表示数据的组数. 每组数据第1 行,2 ...

  6. 如何在redhat 7上安装VNC服务器

    平时我们基本上都是用xshell或者用putty远程我们的linux服务器,如果我们的linux服务器安装了图型化界面那我们又该如何远程使用我们的图形化界面呢?下面我们用vnc来实现远程我们的linu ...

  7. Django cookie、session使用

    一.cookie Cookie是key-value结构,类似于一个python中的字典.随着服务器端的响应发送给客户端浏览器.然后客户端浏览器会把Cookie保存起来,当下一次再访问服务器时把Cook ...

  8. linux安装openjdk

    使用yum查找jdk: yum search java | grep jdk 执行安装命令:yum install java-1.8.0-openjdk

  9. js事件委托或事件代理

    起因: 1.这是前端面试的经典题型,要去找工作的小伙伴看看还是有帮助的: 2.其实我一直都没弄明白,写这个一是为了备忘,二是给其他的知其然不知其所以然的小伙伴们以参考: 概述: 那什么叫事件委托呢?它 ...

  10. python最好用的IDE及查看源码的方法

    一.PyCharm 很多语言都有比较流行的开发工具,比如JAVA 的Eclipse, C#,C++的VisualStudio,最好的Python 开发IDE就是PyCharm 可以直接调试代码,试运行 ...