[bzoj2989]数列_KD-Tree_旋转坐标系
数列 bzoj-2989
题目大意:题目链接。
注释:略。
想法:显然,我们用x和a[x]两个值建立笛卡尔坐标系。
两个点之间的距离为曼哈顿距离。
修改操作就是插入...
查询操作就是查询一个点周围的斜正方形的点数。
而斜正方形的复杂度是没有办法保证的。
所以,我们旋转坐标系。
每个点都变成了$\frac{x+y}{\sqrt{2}}$和$\frac{x-y}{\sqrt{2}}$。
有根号我们没有办法处理,所以我们直接乘以根号2。
乘完了之后,旋转后的坐标系上两个点之间的切比雪夫距离就等于原来的曼哈顿距离。
所以我们直接查询周围的正方形即可。
最后,附上丑陋的代码... ...
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#define N 100010
using namespace std;
int d,root,g[N];
struct Node
{
int c[2],minn[2],p[2],maxn[2],sum;
}a[N];
inline void pushup(int x)
{
int ls=a[x].c[0],rs=a[x].c[1];
a[x].minn[0]=min(a[x].p[0],min(a[ls].minn[0],a[rs].minn[0]));
a[x].minn[1]=min(a[x].p[1],min(a[ls].minn[1],a[rs].minn[1]));
a[x].maxn[0]=max(a[x].p[0],max(a[ls].maxn[0],a[rs].maxn[0]));
a[x].maxn[1]=max(a[x].p[1],max(a[ls].maxn[1],a[rs].maxn[1]));
a[x].sum=a[ls].sum+a[rs].sum+1;
}
inline bool cmp(const Node &a,const Node &b)
{
return a.p[d]==b.p[d]?a.p[d^1]<b.p[d^1]:a.p[d]<b.p[d];
}
int build(int l,int r,int now)
{
int mid=(l+r)>>1;
d=now; nth_element(a+l,a+mid,a+r+1,cmp);
a[mid].minn[0]=a[mid].maxn[0]=a[mid].p[0];
a[mid].minn[1]=a[mid].maxn[1]=a[mid].p[1];
a[mid].c[0]=a[mid].c[1]=0;
if(l<mid) a[mid].c[0]=build(l,mid-1,now^1);
if(mid<r) a[mid].c[1]=build(mid+1,r,now^1);
pushup(mid);
return mid;
}
void insert(int &k , int x)
{
if(!k) k=x;
else if(a[k].p[d]<a[x].p[d]||(a[k].p[d]==a[x].p[d]&&a[k].p[d^1]<a[x].p[d^1])) d^=1,insert(a[k].c[0],x);
else d^=1,insert(a[k].c[1],x);
pushup(k);
}
inline int judge(int k,int x1,int y1,int x2,int y2)
{
if(!k||a[k].maxn[0]<x1||a[k].maxn[1]<y1||a[k].minn[0]>x2||a[k].minn[1]>y2) return -1;
if(a[k].minn[0]>=x1&&a[k].maxn[0]<=x2&&a[k].minn[1]>=y1&&a[k].maxn[1]<=y2) return 1;
return 0;
}
int query(int k,int x1,int y1,int x2,int y2)
{
int opt=judge(k,x1,y1,x2,y2);
if(opt==1) return a[k].sum;
if(opt==-1) return 0;
int ans=(a[k].p[0]>=x1&&a[k].p[1]>=y1&&a[k].p[0]<=x2&&a[k].p[1]<=y2);
return ans+query(a[k].c[0],x1,y1,x2,y2)+query(a[k].c[1],x1,y1,x2,y2);
}
int main()
{
char str[10];
a[0].maxn[0]=a[0].maxn[1]=-1<<30,a[0].minn[0]=a[0].minn[1]=1<<30;
int n,m,x,y;
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++) scanf("%d",&g[i]),a[i].p[0]=i-g[i],a[i].p[1]=i+g[i];
root=build(1,n,0);
for(int i=1;i<=m;i++)
{
scanf("%s%d%d",str,&x,&y);
if(str[0]=='M')g[x]=y,a[++n].p[0]=x-y,a[n].p[1]=x+y,insert(root,n);
else printf("%d\n",query(root,x-g[x]-y,x+g[x]-y,x-g[x]+y,x+g[x]+y));
}
return 0;
}
小结:笛卡尔坐标系上的曼哈顿距离等于顺时针45的笛卡尔坐标系上的切比雪夫距离。
[bzoj2989]数列_KD-Tree_旋转坐标系的更多相关文章
- 【bzoj2989】数列 KD-tree+旋转坐标系
题目描述 给定一个长度为n的正整数数列a[i]. 定义2个位置的graze值为两者位置差与数值差的和,即graze(x,y)=|x-y|+|a[x]-a[y]|. 2种操作(k都是正整数): 1.Mo ...
- bzoj2989 数列(KDTree)
bzoj2989 数列(KDTree) bzoj 该说不愧是咱,一个月才水一篇题解然后还水的一批 题目描述: 给定一个长度为n的正整数数列a[i]. 定义2个位置的graze值为两者位置差与数值差的和 ...
- VPython—旋转坐标系
使用arrow( )创建三个坐标轴代表一个坐标系,其中X0-Y0-Z0为参考坐标系(固定不动),X-Y-Z为运动坐标系,这两个坐标系原点重合,运动坐标系可以绕参考坐标系或其自身旋转.在屏幕上输出一个转 ...
- 【bzoj3170】[Tjoi 2013]松鼠聚会 旋转坐标系
题目描述 有N个小松鼠,它们的家用一个点x,y表示,两个点的距离定义为:点(x,y)和它周围的8个点即上下左右四个点和对角的四个点,距离为1.现在N个松鼠要走到一个松鼠家去,求走过的最短距离. 输入 ...
- [SDOI2018]物理实验 set,扫描线,旋转坐标系
[SDOI2018]物理实验 set,扫描线,旋转坐标系 链接 loj 思路 先将导轨移到原点,然后旋转坐标系,参考博客. 然后分线段,每段的贡献(三角函数值)求出来,用自己喜欢的平衡树,我选set. ...
- HDU 6538 Neko and quadrilateral(极角排序+旋转坐标系)
这道题简直太好了,对于计算几何选手需要掌握的一个方法. 首先对于求解四边形面积,我们可以将四边形按对角线划分成两个三角形,显然此时四边形的面积最大最小值就变成了求解里这个对角线最近最远的点对. 对于此 ...
- Android canvas rotate():平移旋转坐标系至任意原点任意角度-------附:android反三角函数小结
自然状态下,坐标系以屏幕左上角为原点,向右是x正轴,向下是y正轴.现在要使坐标系的原点平移至任一点O(x,y),且旋转a角度,如何实现? 交待下我的问题背景,已知屏幕上有两点p1和p2,构成直线l.我 ...
- [bzoj1500][NOI2005]维修数列_非旋转Treap
维修数列 bzoj-1500 NOI-2005 题目大意:给定n个数,m个操作,支持:在指定位置插入一段数:删除一个数:区间修改:区间翻转.查询:区间和:全局最大子序列. 注释:$1\le n_{ma ...
- hdu4998 旋转坐标系
题意: 一开始的时候有一个坐标系(正常的),然后有n个操作,每个操作是 x y d,意思是当前坐标系围绕x,y点逆时针旋转d度,最后让你输出三个数x y d,把这n个操作的最后结果,用一步 ...
随机推荐
- spring基础学习---aop
1:无参aop下面为项目结构 2:通知类.MyAdvice package cn.edu.aop; import org.aspectj.lang.ProceedingJoinPoint; //通知类 ...
- Complicated Expressions(表达式转换)
http://poj.org/problem?id=1400 题意:给出一个表达式可能含有多余的括号,去掉多余的括号,输出它的最简形式. 思路:先将表达式转化成后缀式,因为后缀式不含括号,然后再转化成 ...
- webpack的初步使用(01)
webpack:1.安装:在项目文件下先npm init初始化,一路回车2.进入到建立的项目下:cd projectname3.安装webpack:npm install webpack --save ...
- 网站防止用户复制的js方法
<script type="text/javascript">function stop() {return false;}document.oncontextmenu ...
- 34、JavaScript面向对象(内置构造函数&相关方法|属性|运算符&继承&面向对象)
一.面向对象 1.1 this的指向问题 要看清楚最终的函数调用者是谁. IIFE也被当做函数直接运行,IIFE的this都是window对象 函数的arguments是类数组对象,比如传入的第0项参 ...
- Elasticsearch如何做到亿级数据查询毫秒级返回?
阅读本文大概需要 6 分钟. 如果面试的时候碰到这样一个面试题:ES 在数据量很大的情况下(数十亿级别)如何提高查询效率? 这个问题说白了,就是看你有没有实际用过 ES,因为啥?其实 ES 性能并没有 ...
- python之 文件操作
一.初识文件操作 使用python来读写文件是非常简单的操作,我们使用open函数来打开一个文件,获取到 文件句柄,然后通过文件句柄就可以进行各种各样的操作,同过打开方式的不同能够执行的 操作也会有相 ...
- Wannafly挑战赛19 A-队列Q
题目描述 ZZT 创造了一个队列 Q.这个队列包含了 N 个元素,队列中的第 i 个元素用 Qi 表示.Q1 表示队头元素,QN 表示队尾元素.队列中的元素是 N 的一个全排列. ZZT 需要在这个队 ...
- 将npm修改为cnpm
1.更改npm的源地址 检测是否更改成功 2.用cnpm代替npm npm常用命令: npm更新:npm install -g npm npm初始化生成package.json: npm init ...
- StackOverflowError&OutOfMemoryError区别
在Java虚拟机规范中,针对内存分配规定两种异常状况,即StackOverflowError和OutOfMemoryError. StackOverflowError:当线程请求的内存大小大于所配置的 ...