USACO 4.4 Pollutant Control (网络流求最小割割集)
Pollutant Control
Hal Burch
It's your first day in Quality Control at Merry Milk Makers, and already there's been a catastrophe: a shipment of bad milk has been sent out. Unfortunately, you didn't discover this until the milk was already into your delivery system on its way to stores. You know which grocer that milk was destined for, but there may be multiple ways for the milk to get to that store.
The delivery system is made up of a several warehouses, with trucks running from warehouse to warehouse moving milk. While the milk will be found quickly, it is important that it does not make it to the grocer, so you must shut down enough trucks to ensure that it is impossible for the milk to get to the grocer in question. Every route costs a certain amount to shut down. Find the minimum amount that must be spent to ensure the milk does not reach its destination, along with a set of trucks to shut down that achieves this goal at that cost.
PROGRAM NAME: milk6
INPUT FORMAT
Line 1: | Two space separated integers, N and M. N (2 <= N <= 32) is the number of warehouses that Merry Milk Makers has, and M (0 <= M <= 1000) is the number of trucks routes run. Warehouse 1 is actually the productional facility, while warehouse N is the grocer to which which the bad milk was destined. |
Line 2..M+1: | Truck routes: three space-separated integers, Si, Ei, and Ci. Si and Ei (1 <= Si,Ei <= N) correspond to the pickup warehouse and dropoff warehouse for the truck route. Ci (0 <= Ci <= 2,000,000) is the cost of shutting down the truck route. |
SAMPLE INPUT (file milk6.in)
4 5 1 3 100 3 2 50 2 4 60 1 2 40 2 3 80
OUTPUT FORMAT
The first line of the output should be two integers, C and T. C is the minimum amount which must be spent in order to ensure the our milk never reaches its destination. T is the minimum number of truck routes that you plan to shut down in order to achive this goal. The next T lines sould contain a sorted list of the indexes of the truck routes that you suggest shutting down. If there are multiple sets of truck routes that achieve the goal at minimum cost, choose one that shuts down the minimum number of routes. If there are still multiple sets, choose the one whose initial routes have the smallest index.
SAMPLE OUTPUT (file milk6.out)
60 1 3 ———————————————————————————————————————题解第一次写最小割解集,总结一下【1】最小割在数值上等于最大流【2】在残余网络中求与源点s相连的点集S,其余的点是T【3】最小割的割集就是一个点在S一个点在T中的弧这是求出一个割集的方法,如果要求所有的话,我们不断的从刚才求到割集中T中的点再做floodfill直到不能再更新为止然后就可以做完了,这个做法好像是来自WC2007的……和nocow里的不一样,nocow的题解写了一下,会T,也不知道是不是我写的不优美但是这个0.000都可以过的 2018.11.26upd:这个博文的访问量好高= =但是我发现这个算法其实是个假的orz。。。抱歉了各位。。。。
/* ID: ivorysi LANG: C++ TASK: milk6 */ #include <iostream> #include <cstdio> #include <cstring> #include <algorithm> #include <queue> #include <set> #include <vector> #include <string.h> #define siji(i,x,y) for(int i=(x);i<=(y);++i) #define gongzi(j,x,y) for(int j=(x);j>=(y);--j) #define xiaosiji(i,x,y) for(int i=(x);i<(y);++i) #define sigongzi(j,x,y) for(int j=(x);j>(y);--j) #define inf 0x7fffffff #define ivorysi #define mo 97797977 #define hash 974711 #define base 47 #define pss pair<string,string> #define MAXN 30005 #define fi first #define se second #define pii pair<int,int> using namespace std; struct node { int to,next,val; }edge[]; ],sum=,n,m; void add(int u,int v,int c) { edge[++sum].to=v; edge[sum].val=c; edge[sum].next=head[u]; head[u]=sum; } void addtwo(int u,int v,int c) { add(u,v,c); add(v,u,); } ],gap[],used[]; int sap(int u,int aug) { if(u==n) return aug; ,dmin=n-; for(int i=head[u];i;i=edge[i].next) { int v=edge[i].to; ) { ==dis[u]) { int t=sap(v,min(edge[i].val,aug-flow)); flow+=t; edge[i].val-=t; edge[i^].val+=t; ]>=n) return flow; if(flow==aug) break; } dmin=min(dmin,dis[v]); } } if(!flow) { --gap[dis[u]]; ) dis[]=n; dis[u]=dmin+; ++gap[dis[u]]; } return flow; } void init() { scanf("%d%d",&n,&m); int u,v,c; siji(i,,m) { scanf("%d%d%d",&u,&v,&c); used[u]=;used[v]=; addtwo(u,v,c); } } ],num=inf,lay=; vector<int> ans,temp,list; void dfs(int u) {//floodfill if(s[u]) return; s[u]=;++lay; for(int i=head[u];i;i=edge[i].next) { ) { dfs(edge[i].to); } } } void solve() { init(); ; ]<n) { mincut+=sap(,inf); } siji(i,,n) { ) { ++lay;s[i]=; } } dfs(); ) num=; while(lay<n) { ) break; siji(i,,n) { if(s[i]) { for(int j=head[i];j;j=edge[j].next) { == && !s[edge[j].to]) { temp.push_back(j/); list.push_back(edge[j].to); } } } } ) break;//再也找不到最小割就退出 if(temp.size()<num) { num=temp.size(); ans=temp; sort(ans.begin(),ans.end()); } else if(temp.size()==num) { sort(temp.begin(),temp.end()); ; xiaosiji(i,,num) { ;break;} } if(flag) ans=temp; } xiaosiji(i,,list.size()) { dfs(list[i]); } temp.clear(); } printf("%d %d\n",mincut,num); xiaosiji(i,,num) { printf("%d\n",ans[i]); } } int main(int argc, char const *argv[]) { #ifdef ivorysi freopen("milk6.in","r",stdin); freopen("milk6.out","w",stdout); #else freopen("f1.in","r",stdin); #endif solve(); ; }
USACO 4.4 Pollutant Control (网络流求最小割割集)的更多相关文章
- 【BZOJ1391】Order(网络流,最小割)
[BZOJ1391]Order(网络流,最小割) 题面 BZOJ权限题... 良心洛谷 题目描述 有N个工作,M种机器,每种机器你可以租或者买过来. 每个工作包括若干道工序,每道工序需要某种机器来完成 ...
- 【BZOJ3144】切糕(网络流,最小割)
[BZOJ3144]切糕(网络流,最小割) 题面 BZOJ 题解 这样的类型很有趣 先不考虑相邻距离差不能超过\(D\)的限制 我们考虑答案,显然就是在每个位置选一个最小的高度割就行了 化成最小割的模 ...
- sw算法求最小割学习
http:// blog.sina.com.cn/s/blog_700906660100v7vb.html 转载:http://www.cnblogs.com/ylfdrib/archive/201 ...
- poj 3469 Dual Core CPU【求最小割容量】
Dual Core CPU Time Limit: 15000MS Memory Limit: 131072K Total Submissions: 21453 Accepted: 9297 ...
- BZOJ_1001_狼抓兔子_(平面图求最小割+对偶图求最短路)
描述 http://www.lydsy.com/JudgeOnline/problem.php?id=1001 1001: [BeiJing2006]狼抓兔子 Time Limit: 15 Sec ...
- HDU - 3035 War(对偶图求最小割+最短路)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3035 题意 给个图,求把s和t分开的最小割. 分析 实际顶点和边非常多,不能用最大流来求解.这道题要用 ...
- 【BZOJ2229】[ZJOI2011]最小割(网络流,最小割树)
[BZOJ2229][ZJOI2011]最小割(网络流,最小割树) 题面 BZOJ 洛谷 题解 戳这里 那么实现过程就是任选两点跑最小割更新答案,然后把点集划分为和\(S\)联通以及与\(T\)联通. ...
- 【CF331E】Biologist(网络流,最小割)
[CF331E]Biologist(网络流,最小割) 题面 洛谷 翻译: 有一个长度为\(n\)的\(01\)串,将第\(i\)个位置变为另外一个数字的代价是\(v_i\). 有\(m\)个要求 每个 ...
- [ZJOI2011]最小割 & [CQOI2016]不同的最小割 分治求最小割
题面: [ZJOI2011]最小割 [CQOI2016]不同的最小割 题解: 其实这两道是同一道题.... 最小割是用的dinic,不同的最小割是用的isap 其实都是分治求最小割 简单讲讲思路吧 就 ...
随机推荐
- [Java] 理解JVM之三:垃圾回收机制
JVM内存中的各个区域都会回收吗? 首先我们知道 Java 栈和本地方法栈在方法执行完成后对应的栈帧就立刻出栈销毁,两者的回收率可以认为是100%:Java 堆中的对象在没有被引用后,即使用完成后会被 ...
- vue中的slot与slot-scope
深入理解vue中的slot与slot-scope vue+element-ui+slot-scope或原生实现可编辑表格 vue插槽详解
- Spring Enable*高级应用及原理
Enable* 之前的文章用到了一些Enable*开头的注解,比如EnableAsync.EnableScheduling.EnableAspectJAutoProxy.EnableCaching等, ...
- ASP.NET根据IP获取省市地址
1.在网站的跟路径下面添加 QQWry.dat 文件,这个文件是IP数据库文件 2.添加以下一个类 IPScanner C# 代码 复制 public class IPScanner { ...
- 【Hadoop】Win7上搭建Hadoop开发环境,方法一
在Win7上,编写hadoop程序 操作系统:win7 hadoop版本:CDH3u6 1.下载安装JDK,以及Eclipse 2.新建JAVA Project 3.去cloudera网站下载hado ...
- Android 动态添加Spinner(.java文件内实现) 实现 改变spinner 内文字属性
动态添加spinner 控件 Spinner s = new Spinner(this); String []items={"自己定义的要显示的数组"}; my_SpinnerAd ...
- Pythagorean Triples(Codeforces Round #368 (Div. 2) + 构建直角三角形)
题目链接: https://codeforces.com/contest/707/problem/C 题目: 题意: 告诉你直角三角形的一条边,要你输出另外两条边. 思路: 我们容易发现除2外的所有素 ...
- c++ static静态
在C++中,静态成员是属于整个类的而不是某个对象,静态成员变量只存储一份供所有对象共用.所以在所有对象中都可以共享它.使用静态成员变量实现多个对象之间的数据共享不会破坏隐藏的原则,保证了安全性还可以节 ...
- UNIX环境高级编程 第8章 进程控制
本章是UNIX系统中进程控制原语,包括进程创建.执行新程序.进程终止,另外还会对进程的属性加以说明,包括进程ID.实际/有效用户ID. 进程标识 每个进程某一时刻在系统中都是独一无二的,它们之间是用一 ...
- 【codeforces】【比赛题解】#862 CF Round #435 (Div.2)
这次比赛打得很舒服,莫名得了个Rank41,涨了219的Rating,就比较优秀.不过还是没有闫神厉害啊.题目链接::P. [A]MEX 题意: Evil博士把Mahmoud和Ehab绑架到了邪恶之地 ...