***************************************转载请注明出处:http://blog.csdn.net/lttree***************************************

最大连续子序列

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)

Total Submission(s): 17941    Accepted Submission(s): 7941

Problem Description
给定K个整数的序列{ N1, N2, ..., NK },其随意连续子序列可表示为{ Ni, Ni+1, ..., 

Nj },当中 1 <= i <= j <= K。最大连续子序列是全部连续子序列中元素和最大的一个, 

比如给定序列{ -2, 11, -4, 13, -5, -2 },其最大连续子序列为{ 11, -4, 13 },最大和 

为20。 

在今年的数据结构考卷中,要求编敲代码得到最大和,如今添加一个要求,即还须要输出该 

子序列的第一个和最后一个元素。
 
Input
測试输入包括若干測试用例,每一个測试用例占2行,第1行给出正整数K( < 10000 ),第2行给出K个整数,中间用空格分隔。当K为0时,输入结束,该用例不被处理。
 
Output
对每一个測试用例,在1行里输出最大和、最大连续子序列的第一个和最后一个元 

素,中间用空格分隔。假设最大连续子序列不唯一,则输出序号i和j最小的那个(如输入例子的第2、3组)。若全部K个元素都是负数,则定义其最大和为0,输出整个序列的首尾元素。 
 
Sample Input
6
-2 11 -4 13 -5 -2
10
-10 1 2 3 4 -5 -23 3 7 -21
6
5 -8 3 2 5 0
1
10
3
-1 -5 -2
3
-1 0 -2
0
 
Sample Output
20 11 13
10 1 4
10 3 5
10 10 10
0 -1 -2
0 0 0
Hint
Hint
Huge input, scanf is recommended.
 

继续做点DP题目,这次是最大连续子序列。
这样的的状态转移方程非常easy,就是  dp[i]=max(dp[i-1]+a[i],a[i])
由于要输出首尾位置,所以我又建立了一个数组来存,到达当前位置的 首部。

这道题,在全部数据都为负数情况下,要求总和为0,输出整个数组首尾位置,
这个实现,能够用一个bool变量,在输入数据时,一个个推断——62MS
也能够再建立一个数组,然后sort排序一下,推断最大数是否为负数——125MS,并且有额外10000大空间消耗

/****************************************
*****************************************
* Author:Tree *
*From :http://blog.csdn.net/lttree *
* Title : 最大连续子序列 *
*Source: hdu 1231 *
* Hint : dp *
*****************************************
****************************************/
#include <stdio.h>
int a[10001],sum[10001],pre[10001];
int main()
{
int n,i;
int Max,Max_i;
// isnegtive来推断是否全部数都小于0
bool isnegtive;
while( scanf("%d",&n)!=EOF && n)
{
isnegtive=false;
for(i=0;i<n;++i)
{
scanf("%d",&a[i]);
if( a[i]>=0 ) isnegtive=true;
} // 假设全部数都小于0,后面不用算,直接输出
if( !isnegtive )
{
printf("0 %d %d\n",a[0],a[n-1]);
continue;
} // 计算最大序列和
sum[0]=pre[0]=a[0];
for( i=1;i<n;++i )
{
if( sum[i-1]+a[i]>a[i] )
{
sum[i]=sum[i-1]+a[i];
pre[i]=pre[i-1];
}
else
sum[i]=pre[i]=a[i];
} // 寻找最大子序列和,存下下标
Max=-999999;
for( i=0;i<n;++i )
{
if( sum[i]>Max )
{
Max=sum[i];
Max_i=i;
}
} printf("%d %d %d\n",Max,pre[Max_i],a[Max_i]);
}
return 0;
}


ACM-DP之最大连续子序列——hdu1231的更多相关文章

  1. 动态规划(Dynamic Programming, DP)---- 最大连续子序列和

    动态规划(Dynamic Programming, DP)是一种用来解决一类最优化问题的算法思想,简单来使,动态规划是将一个复杂的问题分解成若干个子问题,或者说若干个阶段,下一个阶段通过上一个阶段的结 ...

  2. 【ACM】 1231 最大连续子序列

    [1231 最大连续子序列 ** Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) To ...

  3. HDU-1231 简单dp,连续子序列最大和,水

    1.HDU-1231 2.链接:http://acm.hdu.edu.cn/showproblem.php?pid=1231 3.总结:水 题意:连续子序列最大和 #include<iostre ...

  4. DP专题训练之HDU 1231 最大连续子序列

    Description 给定K个整数的序列{ N1, N2, ..., NK },其任意连续子序列可表示为{ Ni, Ni+1, ..., Nj },其中 1 <= i <= j < ...

  5. hdu1231 最长连续子序列和

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1231 给定K个整数的序列{ N1, N2, ..., NK },其任意连续子序列可表示为{ Ni, N ...

  6. 最大连续子序列乘积(DP)

    题目来源:小米手机2013年校园招聘笔试题 题目描述: 给定一个浮点数序列(可能有正数.0和负数),求出一个最大的连续子序列乘积. 输入: 输入可能包含多个测试样例.每个测试样例的第一行仅包含正整数 ...

  7. HDU 1231 最大连续子序列 --- 入门DP

    HDU 1231 题目大意以及解题思路见: HDU 1003题解,此题和HDU 1003只是记录的信息不同,处理完全相同. /* HDU 1231 最大连续子序列 --- 入门DP */ #inclu ...

  8. HDU 1003 Max Sum && HDU 1231 最大连续子序列 (DP)

    Max Sum Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Sub ...

  9. ACM_HDU 1231 最大连续子序列 (dp)_代码分析

    Problem Description 给定K个整数的序列{ N1, N2, ..., NK },其任意连续子序列可表示为{ Ni, Ni+1, ..., Nj },其中 1 <= i < ...

随机推荐

  1. gif处理

    UleadGIFAnimator-v5.05破解版 网盘地址:https://pan.baidu.com/s/1bpf6iVP 2017-02-19  10:39:58

  2. CCF CSP 201512-3 画图

    CCF计算机职业资格认证考试题解系列文章为meelo原创,请务必以链接形式注明本文地址 CCF CSP 201512-3 画图 问题描述 用 ASCII 字符来画图是一件有趣的事情,并形成了一门被称为 ...

  3. 2017-2018 ACM-ICPC Pacific Northwest Regional Contest (Div. 1) M - Unsatisfying 2-Sat

    题目大意:给你 m 个式子, 问你最少再添加多少式子能使没有任何一种赋值方式使全部的式子为真. 并且在你给的式子中不能有非. 思路:根据题目给的m个式子可以建出2-Sat的图, 现在问你最少加多少个边 ...

  4. HTML5 Canvas游戏开发(二)高级功能

    一.变形 1.放大和缩小 scale(X,Y)函数. 当使用该函数时,其起始坐标值也被放大或缩小.当X.Y为负值时,可以实现翻转. 2.平移变换 translate(X,Y)函数. 表示水平方向向左移 ...

  5. Cordova 打包签名

    1.第一步 在项目根目录下运行命令cordova build --release android,会在testApp\platforms\android\build\outputs\apk目录下生成一 ...

  6. qt study2

  7. TCP可靠传输及流量控制实现原理

    一.为什么TCP是可靠传输? 1. 停止等待协议 通过确认与超时重传机制实现可靠传输 在发送完一个分组后,必须暂时保留已发送的分组的副本. 分组和确认分组都必须进行编号. 超时计时器的重传时间应当比数 ...

  8. spring中的scope详解

    spring容器中的bean默认是单例模式的,改成非单例模式需要在类上加上@Scope("prototype") 1. scope概论 spring中scope是一个非常关键的概念 ...

  9. Java拾遗补缺

    JDK9的lib目录下已经不再包含dt.jar和tool.jar.

  10. iOS Sprite Kit教程之使用帮助文档以及调试程序

    iOS Sprite Kit教程之使用帮助文档以及调试程序 IOS中使用帮助文档 在编写代码的时候,可能会遇到很多的方法.如果开发者对这些方法的功能,以及参数不是很了解,就可以使用帮助文档.那么帮助文 ...