***************************************转载请注明出处:http://blog.csdn.net/lttree***************************************

最大连续子序列

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)

Total Submission(s): 17941    Accepted Submission(s): 7941

Problem Description
给定K个整数的序列{ N1, N2, ..., NK },其随意连续子序列可表示为{ Ni, Ni+1, ..., 

Nj },当中 1 <= i <= j <= K。最大连续子序列是全部连续子序列中元素和最大的一个, 

比如给定序列{ -2, 11, -4, 13, -5, -2 },其最大连续子序列为{ 11, -4, 13 },最大和 

为20。 

在今年的数据结构考卷中,要求编敲代码得到最大和,如今添加一个要求,即还须要输出该 

子序列的第一个和最后一个元素。
 
Input
測试输入包括若干測试用例,每一个測试用例占2行,第1行给出正整数K( < 10000 ),第2行给出K个整数,中间用空格分隔。当K为0时,输入结束,该用例不被处理。
 
Output
对每一个測试用例,在1行里输出最大和、最大连续子序列的第一个和最后一个元 

素,中间用空格分隔。假设最大连续子序列不唯一,则输出序号i和j最小的那个(如输入例子的第2、3组)。若全部K个元素都是负数,则定义其最大和为0,输出整个序列的首尾元素。 
 
Sample Input
6
-2 11 -4 13 -5 -2
10
-10 1 2 3 4 -5 -23 3 7 -21
6
5 -8 3 2 5 0
1
10
3
-1 -5 -2
3
-1 0 -2
0
 
Sample Output
20 11 13
10 1 4
10 3 5
10 10 10
0 -1 -2
0 0 0
Hint
Hint
Huge input, scanf is recommended.
 

继续做点DP题目,这次是最大连续子序列。
这样的的状态转移方程非常easy,就是  dp[i]=max(dp[i-1]+a[i],a[i])
由于要输出首尾位置,所以我又建立了一个数组来存,到达当前位置的 首部。

这道题,在全部数据都为负数情况下,要求总和为0,输出整个数组首尾位置,
这个实现,能够用一个bool变量,在输入数据时,一个个推断——62MS
也能够再建立一个数组,然后sort排序一下,推断最大数是否为负数——125MS,并且有额外10000大空间消耗

/****************************************
*****************************************
* Author:Tree *
*From :http://blog.csdn.net/lttree *
* Title : 最大连续子序列 *
*Source: hdu 1231 *
* Hint : dp *
*****************************************
****************************************/
#include <stdio.h>
int a[10001],sum[10001],pre[10001];
int main()
{
int n,i;
int Max,Max_i;
// isnegtive来推断是否全部数都小于0
bool isnegtive;
while( scanf("%d",&n)!=EOF && n)
{
isnegtive=false;
for(i=0;i<n;++i)
{
scanf("%d",&a[i]);
if( a[i]>=0 ) isnegtive=true;
} // 假设全部数都小于0,后面不用算,直接输出
if( !isnegtive )
{
printf("0 %d %d\n",a[0],a[n-1]);
continue;
} // 计算最大序列和
sum[0]=pre[0]=a[0];
for( i=1;i<n;++i )
{
if( sum[i-1]+a[i]>a[i] )
{
sum[i]=sum[i-1]+a[i];
pre[i]=pre[i-1];
}
else
sum[i]=pre[i]=a[i];
} // 寻找最大子序列和,存下下标
Max=-999999;
for( i=0;i<n;++i )
{
if( sum[i]>Max )
{
Max=sum[i];
Max_i=i;
}
} printf("%d %d %d\n",Max,pre[Max_i],a[Max_i]);
}
return 0;
}


ACM-DP之最大连续子序列——hdu1231的更多相关文章

  1. 动态规划(Dynamic Programming, DP)---- 最大连续子序列和

    动态规划(Dynamic Programming, DP)是一种用来解决一类最优化问题的算法思想,简单来使,动态规划是将一个复杂的问题分解成若干个子问题,或者说若干个阶段,下一个阶段通过上一个阶段的结 ...

  2. 【ACM】 1231 最大连续子序列

    [1231 最大连续子序列 ** Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) To ...

  3. HDU-1231 简单dp,连续子序列最大和,水

    1.HDU-1231 2.链接:http://acm.hdu.edu.cn/showproblem.php?pid=1231 3.总结:水 题意:连续子序列最大和 #include<iostre ...

  4. DP专题训练之HDU 1231 最大连续子序列

    Description 给定K个整数的序列{ N1, N2, ..., NK },其任意连续子序列可表示为{ Ni, Ni+1, ..., Nj },其中 1 <= i <= j < ...

  5. hdu1231 最长连续子序列和

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1231 给定K个整数的序列{ N1, N2, ..., NK },其任意连续子序列可表示为{ Ni, N ...

  6. 最大连续子序列乘积(DP)

    题目来源:小米手机2013年校园招聘笔试题 题目描述: 给定一个浮点数序列(可能有正数.0和负数),求出一个最大的连续子序列乘积. 输入: 输入可能包含多个测试样例.每个测试样例的第一行仅包含正整数 ...

  7. HDU 1231 最大连续子序列 --- 入门DP

    HDU 1231 题目大意以及解题思路见: HDU 1003题解,此题和HDU 1003只是记录的信息不同,处理完全相同. /* HDU 1231 最大连续子序列 --- 入门DP */ #inclu ...

  8. HDU 1003 Max Sum && HDU 1231 最大连续子序列 (DP)

    Max Sum Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Sub ...

  9. ACM_HDU 1231 最大连续子序列 (dp)_代码分析

    Problem Description 给定K个整数的序列{ N1, N2, ..., NK },其任意连续子序列可表示为{ Ni, Ni+1, ..., Nj },其中 1 <= i < ...

随机推荐

  1. CVE-2013-2729 Adobe Reader和Acrobat 数字错误漏洞

    这个洞是在论坛里看到的,感觉很有意思,来学习一下.个人感觉IE或者说是浏览器的洞和Adobe洞都是比较难调的,主要是有大量的类难以摸清之间的关系. 这个洞是一个整数溢出的洞,这个不是重点.重点是利用的 ...

  2. Ubuntu 使用命令更新 Ubuntu 系统

    我们都知道 Ubuntu 是一款 Linux 系统,是开源的系统,随时都在更新,所以人们都说 Linux 系统要比 Windows 系统安全.那么为了我们的电脑安全,我们如何利用 Ubuntu 命令来 ...

  3. 选择性卸载eclipse安装过的工具

    我们有时候需要卸载eclipse中之前安装的一些工具,而不想全部删除,那就可以采取下面的方式: 打开eclipse,Help->About Eclipse->Installation De ...

  4. C#重写ToString

    C# 中的每个类或结构都可隐式继承 <xref:System.Object> 类. 因此,C# 中的每个对象都会获取 <xref:System.Object.ToString%2A& ...

  5. SQL之PROCEDURE(存储过程)

    先来看一小段代码 create procedure pr_bank(@bank_id int) as BEGIN select *from bank where bank_ID = @bank_id ...

  6. deploy.sh

    备份一下之前的一个脚本吧 #!bin/bash adb uninstall org.cocos2d.fishingjoy4 for apk in `find . -name '*.apk' | xar ...

  7. 微信接口问题(The underlying connection was closed: An unexpected error occurred on a send)

    突然在调用微信接口是报:The underlying connection was closed: An unexpected error occurred on a send错误,跟踪了半天,是因为 ...

  8. 1391: [Ceoi2008]order

    有N个工作,M种机器,每种机器你可以租或者买过来. 每个工作包括若干道工序,每道工序需要某种机器来完成,你可以通过购买或租用机器来完成. 现在给出这些参数,求最大利润 Input 第一行给出 N,M( ...

  9. tp5总结(四)

    数据库 1.数据库配置 1-1.配置文件配置[http://ww:7070/tp5-3/public/] 1-2.Db::connect配置[数组和字符串方式][http://ww:7070/tp5- ...

  10. Bootstrap--响应式图片轮播

    <div class="row"> <div class="span12"> <section id="carousel ...