[codeforces 293]B. Distinct Paths
[codeforces 293]B. Distinct Paths
试题描述
You have a rectangular n × m-cell board. Some cells are already painted some of k colors. You need to paint each uncolored cell one of the k colors so that any path from the upper left square to the lower right one doesn't contain any two cells of the same color. The path can go only along side-adjacent cells and can only go down or right.
Print the number of possible paintings modulo 1000000007 (109 + 7).
输入
The first line contains three integers n, m, k (1 ≤ n, m ≤ 1000, 1 ≤ k ≤ 10). The next n lines contain m integers each — the board. The first of them contains m uppermost cells of the board from the left to the right and the second one contains m cells from the second uppermost row and so on. If a number in a line equals 0, then the corresponding cell isn't painted. Otherwise, this number represents the initial color of the board cell — an integer from 1 to k.
Consider all colors numbered from 1 to k in some manner.
输出
输入示例
输出示例
数据规模及约定
见“输入”
题解
容易发现当 n + m - 1 > k 时,答案永远是 0,所以真正需要计算的数据范围是 n, m <= 10 且 n + m <= 11,那么这个地图就很小了,最多有 25 个块。
然后我想状压 dp,发现根本没法转移。。。上网搜了一下题解发现是大爆搜 + 剪枝。。。
贴个传送门,上面两种剪枝讲得很清楚。(戳这里)
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cmath>
#include <stack>
#include <vector>
#include <queue>
#include <cstring>
#include <string>
#include <map>
#include <set>
using namespace std; const int BufferSize = 1 << 16;
char buffer[BufferSize], *Head, *Tail;
inline char Getchar() {
if(Head == Tail) {
int l = fread(buffer, 1, BufferSize, stdin);
Tail = (Head = buffer) + l;
}
return *Head++;
}
int read() {
int x = 0, f = 1; char c = getchar();
while(!isdigit(c)){ if(c == '-') f = -1; c = getchar(); }
while(isdigit(c)){ x = x * 10 + c - '0'; c = getchar(); }
return x * f;
} #define maxn 15
#define maxs 1100
#define MOD 1000000007
int n, m, k, A[maxn][maxn]; int s[maxn][maxn], ans, col[maxn][maxn], use[maxn];
int dfs(int x, int y) {
// printf("%d %d\n", x, y);
// for(int i = 1; i <= n; i++) {
// for(int j = 1; j <= m; j++) printf("%d ", col[i][j]);
// putchar('\n');
// }
// putchar('\n');
if(x > n) return 1;
s[x][y] = s[x-1][y] | s[x][y-1];
int cnt = 0;
for(int i = 0; i < k; i++) if(s[x][y] >> i & 1) cnt++;
if(k - cnt < (n - x) + (m - y) + 1) return 0;
if(A[x][y] && (s[x][y] >> A[x][y] - 1 & 1)) return 0;
int ans = 0, sum = -1;
if(!A[x][y]) {
for(int i = 1; i <= k; i++) if(!(s[x][y] >> i - 1 & 1)) {
if(!use[i] && sum >= 0) {
ans += sum;
if(ans >= MOD) ans -= MOD;
continue;
}
s[x][y] ^= (1 << i - 1); use[i]++; col[x][y] = i;
int tmp = 0;
if(y < m) tmp = dfs(x, y + 1); else tmp = dfs(x + 1, 1);
s[x][y] ^= (1 << i - 1); use[i]--; col[x][y] = 0;
ans += tmp;
if(ans >= MOD) ans -= MOD;
if(!use[i]) sum = tmp;
}
}
else {
s[x][y] ^= (1 << A[x][y] - 1); use[A[x][y]]++; col[x][y] = A[x][y];
if(y < m) ans += dfs(x, y + 1); else ans += dfs(x + 1, 1);
s[x][y] ^= (1 << A[x][y] - 1); use[A[x][y]]--; col[x][y] = 0;
if(ans >= MOD) ans -= MOD;
}
return ans;
} int main() {
n = read(); m = read(); k = read();
for(int i = 1; i <= n; i++)
for(int j = 1; j <= m; j++) A[i][j] = read(), use[A[i][j]] = 1; printf("%d\n", dfs(1, 1)); return 0;
}
[codeforces 293]B. Distinct Paths的更多相关文章
- [codeforces 293]A. Weird Game
[codeforces 293]A. Weird Game 试题描述 Yaroslav, Andrey and Roman can play cubes for hours and hours. Bu ...
- CF293B Distinct Paths题解
CF293B Distinct Paths 题意 给定一个\(n\times m\)的矩形色板,有kk种不同的颜料,有些格子已经填上了某种颜色,现在需要将其他格子也填上颜色,使得从左上角到右下角的任意 ...
- CF293B. Distinct Paths
B. Distinct Paths time limit per test 2 seconds memory limit per test 256 megabytes input standard i ...
- Codeforces 293B Distinct Paths DFS+剪枝+状压
目录 题面 题目链接 题意翻译 输入输出样例 输入样例#1 输出样例#1 输入样例#2 输出样例#2 输入样例#3 输出样例#3 输入样例#4 输出样例#4 说明 思路 AC代码 总结 题面 题目链接 ...
- CodeForces 1073F Choosing Two Paths
Description You are given an undirected unweighted tree consisting of \(n\) vertices. An undirected ...
- 【CodeForces】870 F. Paths
[题目]F. Paths [题意]给定数字n,图上有编号为1~n的点,两点当且仅当gcd(u,v)≠1时有连边,定义d(u,v)为两点间最短距离(若不连通则为0),求Σd(u,v),1<=u&l ...
- CF293B Distinct Paths 搜索
传送门 首先数据范围很假 当\(N + M - 1 > K\)的时候就无解 所以对于所有要计算的情况,\(N + M \leq 11\) 超级小是吧,考虑搜索 对于每一个格子试填一个数 对于任意 ...
- Codeforces 981H:K Paths
传送门 考虑枚举一条路径 \(u,v\),求出所有边经过它的答案 只需要求出 \(u\) 的子树内选出 \(k\) 个可以重复的点,使得它们到 \(u\) 的路径不相交 不难发现,就是从 \(u\) ...
- [CF293B]Distinct Paths_搜索_剪枝
Distinct Paths 题目链接:http://codeforces.com/problemset/problem/293/B 数据范围:略. 题解: 带搜索的剪枝.... 想不到吧..... ...
随机推荐
- Gensim进阶教程:训练word2vec与doc2vec模型
本篇博客是Gensim的进阶教程,主要介绍用于词向量建模的word2vec模型和用于长文本向量建模的doc2vec模型在Gensim中的实现. Word2vec Word2vec并不是一个模型--它其 ...
- Windows Azure 名词定义(Glossary)
Glossary(名词) Definition(定义) Availability Set 可用性组 refers to two or more Virtual Machines deployed ac ...
- css3中transform的用法
transform:rotate旋转deg #box1{ -moz-transform:rotate(10deg); -webkit-transform:rotate(10deg); }transfo ...
- [AaronYang]C#人爱学不学[7]
做一个决定,并不难,难的是付诸行动,并且坚持到底 --Aaronyang的博客(www.ayjs.net)-www.8mi.me 1. 委托-我的总结 1.1 委托:面试我都会说,把方法当参数.委托包 ...
- 序列化和反序列化的几种方式(JavaScriptSerializer 、XmlSerializer、DataContractSerializer)(一)
JavaScriptSerializer 类 为启用 AJAX 的应用程序提供序列化和反序列化功能. 命名空间: System.Web.Script.Serialization 程序集: Sys ...
- AngularJS开发指南9:AngularJS作用域的详解
AngularJS作用域是一个指向应用模型的对象.它是表达式的执行环境.作用域有层次结构,这个层次和相应的DOM几乎是一样的.作用域能监控表达式和传递事件. 作用域的特点 作用域提供APIs($wat ...
- MVC——应用Ajax获取不到数据问题解答
当我们使用控制器利用Ajax获取表单数据时,调试为null,这时看看你接受表单时定义的参数名字是否为action 其实不能起这个名字的,这个名字和控制器关键字冲突了 随便换个其它名字就好了,比如我起个 ...
- Java web 学习之旅
java web学习之旅 来公司十天了,感觉已经慢慢地融入了这个环境中,几个学长人都很好,都是在他们帮助下,我才能比较顺利的开始了学习java web的旅途. 来这里学习的第一个阶段是做一个简单的用户 ...
- SQLHelper用到的配置文件格式
格式要牢记 <configuration> <connectionStrings> <add name="dbConnStr" connectionS ...
- 石子合并 区间DP (经典)
http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1021 设sum[i][j]为从第i为开始,长度为j的区间的值得和.dp[ ...