洛谷 P2764 最小路径覆盖问题 解题报告
P2764 最小路径覆盖问题
问题描述:
给定有向图\(G=(V,E)\)。设\(P\) 是\(G\) 的一个简单路(顶点不相交)的集合。如果\(V\) 中每个顶点恰好在\(P\) 的一条路上,则称\(P\)是\(G\) 的一个路径覆盖。\(P\) 中路径可以从\(V\) 的任何一个顶点开始,长度也是任意的,特别地,可以为\(0\)。\(G\) 的最小路径覆盖是\(G\)的所含路径条数最少的路径覆盖。设计一个有效算法求一个有向无环图\(G\) 的最小路径覆盖。
提示:设\(V={1,2,.... ,n}\),构造网络\(G_1=(V_1,E_1)\)
如下:
\(V_1=\{x_1,x_2,...,x_n\}\cup\{y_1,y_2,...y_n\}\)
\(E_1=\{(x_0,x_i):i\in V\}\cup\{(y_0,y_i):i\in E \}\cup\{(x_i,y_j):(i,j)\in E\}\)
即每条边的容量均为1。求网络\(G_1\)最大流。
输入输出格式
输入格式:
件第1 行有2个正整数\(n\)和\(m\)。\(n\)是给定有向无环图\(G\) 的顶点数,\(m\)是\(G\) 的边数。接下来的\(m\)行,每行有\(2\) 个正整数\(i\)和\(j\),表示一条有向边\((i,j)\)。
输出格式:
从第1 行开始,每行输出一条路径。文件的最后一行是最少路径数。
说明
\(1<=n<=150,1<=m<=6000\)
由@zhouyonglong提供SPJ
其实提示说的很清楚了。
这里用我自己的感性语言解释一下。
描述:将图中每个点拆成两个,分成两个图。把连原来的边连上。跑二分图匹配,最小路径数=总点数-最大匹配数。
解释:
不难发现,路径数+路径集合中边的数量=总点数。(肽链)
总点数不变,我们就可以转化到求最大的边的数量。
而对于原图中的每一个点\(i\),都可以分成以下四中情况。

为了使边的数量尽量大,我们应该多令情况(3)出现。
而这几种情况中又一个点最多戳某一个点屁股,也只能被最多被一个戳。
那么,劈配? 匹配?
再看看我们跑的二分图是什么,是不是很明了~
CODE:
#include <cstdio>
#include <cstring>
const int N=160;
int n,m;
struct edge
{
int to,next;
}g[N*N];
int head[N],cnt=0;
void add(int u,int v)
{
g[++cnt].to=v;
g[cnt].next=head[u];
head[u]=cnt;
}
int used[N],match[N];
bool m_find(int u)
{
for(int i=head[u];i;i=g[i].next)
{
int v=g[i].to;
if(!used[v])
{
used[v]=1;
if(!match[v]||m_find(match[v]))
{
match[v]=u;
return true;
}
}
}
return false;
}
void dfs(int now)
{
if(!match[now]) {printf("%d ",now);return;}
dfs(match[now]); printf("%d ",now);
}
int main()
{
scanf("%d%d",&n,&m);
int u,v;
for(int i=1;i<=m;i++)
{
scanf("%d%d",&u,&v);
add(u,v);
}
int ans=0;
for(int i=1;i<=n;i++)
{
memset(used,0,sizeof(used));
if(m_find(i)) ans++;
}
memset(used,0,sizeof(used));
for(int i=1;i<=n;i++)
used[match[i]]=1;
for(int i=1;i<=n;i++)
if(!used[i])
{dfs(i);printf("\n");}
printf("%d\n",n-ans);
return 0;
}
2018.5.6
洛谷 P2764 最小路径覆盖问题 解题报告的更多相关文章
- 洛谷 P2764 最小路径覆盖问题【最大流+拆点+路径输出】
题目链接:https://www.luogu.org/problemnew/show/P2764 题目描述 «问题描述: 给定有向图G=(V,E).设P 是G 的一个简单路(顶点不相交)的集合.如果V ...
- 洛谷P2764 最小路径覆盖问题
有向无环图的最小路径点覆盖 最小路径覆盖就是给定一张DAG,要求用尽量少的不相交的简单路径,覆盖有向无环图的所有顶点. 有定理:顶点数-路径数=被覆盖的边数. 要理解的话可以从两个方向: 假设DAG已 ...
- 【刷题】洛谷 P2764 最小路径覆盖问题
题目描述 «问题描述: 给定有向图G=(V,E).设P 是G 的一个简单路(顶点不相交)的集合.如果V 中每个顶点恰好在P 的一条路上,则称P是G 的一个路径覆盖.P 中路径可以从V 的任何一个顶点开 ...
- 洛谷P2764 最小路径覆盖问题(最大流)
传送门 先说做法:把原图拆成一个二分图,每一个点被拆成$A_i,B_i$,若原图中存在边$(u,v)$,则连边$(A_u,B_v)$,然后$S$对所有$A$连边,所有$B$对$T$连边,然后跑一个最大 ...
- 洛谷 P2764 最小路径覆盖问题【匈牙利算法】
经典二分图匹配问题.把每个点拆成两个,对于原图中的每一条边(i,j)连接(i,j+n),最小路径覆盖就是点数n-二分图最大匹配.方案直接顺着匹配dsf.. #include<iostream&g ...
- 洛谷 P2764(最小路径覆盖=节点数-最大匹配)
给定有向图G=(V,E).设P 是G 的一个简单路(顶点不相交)的集合.如果V 中每个顶点恰好在P 的一条路上,则称P是G 的一个路径覆盖.P 中路径可以从V 的任何一个顶点开始,长度也是任意的,特别 ...
- 洛谷P2764 最小路径覆盖问题(二分图)
题意 给出一张有向无环图,求出用最少的路径覆盖整张图,要求路径在定点处不相交 输出方案 Sol 定理:路径覆盖 = 定点数 - 二分图最大匹配数 直接上匈牙利 输出方案的话就不断的从一个点跳匹配边 # ...
- 洛谷 [P2764]最小路径覆盖问题
二分图应用模版 #include <iostream> #include <cstdio> #include <algorithm> #include <cs ...
- 洛谷-p2764(最小路径覆盖)(网络流24题)
#include<iostream> #include<algorithm> #include<queue> #include<cstring> #in ...
随机推荐
- React 开发注意事项
引用自定义组件的时候,组件名称首字母大写 import CustomComponent from "./customComponent "; render(){ return ( ...
- java基础(个人学习笔记) A
1. 声明long类型的变量 需要在数值的末尾+l/L.(不加L的话,貌似默认就是int型了.当给long赋值一个超过int范围的值的时候,会出问题.) 2. package java_ ...
- InnoDB 文件系统
1. 操作系统文件系统inode 2. InnoDB的存储结构 2.1Innodb inode page 参考 http://mysql.taobao.org/monthly/2016/02/01/ ...
- Jq_DOM元素方法跟JQuery 核心函数跟JQuery 事件方法
JQuery DOM 元素 函数 描述 .get() 从队列中删除所有未运行的项目. .ind ...
- zookeeper 动态管理nginx配置
假设我们有一个场景,所有服务器共享同一份配置文件,我们肯定不可能单独手动维护每台服务器,这时可以利用zookeeper的配置管理功能. 环境:python + nginx + zookeeper 目的 ...
- js方法中拼接html时点击事件中拼接字符串参数
1,代码 var html = '<a href="#" onclick="tableDelete(\''+ row.labelid +'\')"> ...
- 北航学堂Android客户端Beta阶段测试报告
我们已经知道的bug如下: 1.在没有网络的情况下,我们的程序会直接崩溃,没有弹出提醒网络异常的错误,这是个比较严重的bug,我们在6号7号 考试结束之后会进行修改: 有待进行的优化: 1.UI界面的 ...
- 《Linux内核分析》第八周笔记 进程的切换和系统的一般执行过程
20135132陈雨鑫 + 原创作品转载请注明出处 + <Linux内核分析>MOOC课程http://mooc.study.163.com/course/USTC-1000029000 ...
- Linux 实验一 基础实践
Linux 实践一 1:软件源的维护方法 删掉DEB打头的 在命令行中输入命令时,可以用命令补全的方法. 下载完成后,使用sudo dpkg-i skype.deb 来完成安装. 2:掌握Linux ...
- Linux实践:模块
标签(空格分隔): 20135321余佳源 一.实践原理 Linux模块是一些可以作为独立程序来编译的函数和数据类型的集合.之所以提供模块机制,是因为Linux本身是一个单内核.单内核由于所有内容都集 ...