n阶楼梯,一次走1,2,3步,求多少种不同走法
##已知n阶楼梯,一次可以迈1,2,3步。求所有走法
## 如果要列出走法,时间复杂度太高,O(n)=2**n,前两个函数遍历走法。
## 如果只是单纯列出走法数量,就简单多了,也但是很容易内存爆表。
## n层走法,可以视为n-1层再走一步,n-2层走两步,n-3层走三步。题目都可以按这个思路解决
import copy,time
lv=5
n1=1000000
fzd=0
lg=[]
if lv<=1:
def dg(ln,n,l):
global fzd
fzd+=1
if ln<n:
l1=l[:]+[1]
l2=l[:]+[2]
l3=l[:]+[3]
return dg(ln+1,n,l1),dg(ln+2,n,l2),dg(ln+3,n,l3)
if ln==n:
return lg.append(l)
##for j in range(10):
## dg(0,j,[])
## print(len(lg))
## lg=[]
t=time.time()
dg(0,n1,[])
print('dg1 %s阶用时%s s,时间复杂度%s'%(str(n1),str(time.time()-t),fzd))
lg=[]
fzd=0
## 另一种递归 可以将n阶台阶分解为走一步+n-1阶,走两步+n-2阶,走三步+n-3阶
## 时间复杂度太高了。
if lv<=2:
def dg2(n):
global fzd
for i in range(1,n+1):
if i==1:
lg.append([[1]])
elif i==2:
lg.append([[1,1],[2]])
elif i==3:
lg.append([[1, 1, 1],[1, 2],[2, 1],[3]])
else:
##深拷贝耗时太长
##ln1,ln2,ln3=copy.deepcopy(lg[-1]),copy.deepcopy(lg[-2]),copy.deepcopy(lg[-3])
ln1,ln2,ln3=lg[-1],lg[-2],lg[-3]
for j in ln3:
fzd+=1
j.append(3)
for j in ln2:
fzd+=1
j.append(2)
for j in ln1:
fzd+=1
j.append(1)
lg.append(ln3+ln2+ln1)
return lg
t=time.time()
dg2(n1)
print('dg2 %s阶用时%s s,时间复杂度%s'%(str(n1),str(time.time()-t),fzd))
lg=[]
fzd=0
##print(len(lg[-1]))
##for n,i in enumerate(lg):
## print('第%s次展示:'%(n+1))
## for j in i:
## print(j)
#### 只计数
## 正面横推
if lv<=3:
def dgcount(n):
for i in range(1,n+1):
if i==1:
lg.append(1)
elif i==2:
lg.append(2)
elif i==3:
lg.append(4)
else:
lg.append(lg[-3]+lg[-2]+lg[-1])
return lg
t=time.time()
dgcount(n1)
print('dgcount %s阶用时%s s'%(str(n1),str(time.time()-t)))
## 反向递推
if lv<=4:
def dgcount2(n):
if n==1:
return 1
elif n==2:
return 2
elif n==3:
return 4
else:
return dgcount2(n-1)+dgcount2(n-2)+dgcount2(n-3)
t=time.time()
dgcount2(n1)
print('dgcount2 %s阶用时%s s'%(str(n1),str(time.time()-t)))
## 正面横推2
if lv<=5:
def dgcount3(n):
if n>3:
num1=4
num2=2
num3=1
elif n==1:
return 1
elif n==2:
return 2
elif n==3:
return 4
for i in range(4,n+1):
num1,num2,num3=num1+num2+num3,num1,num2
return num1
t=time.time()
dgcount3(n1)
print('dgcount3 %s阶用时%s s'%(str(n1),str(time.time()-t)))
n阶楼梯,一次走1,2,3步,求多少种不同走法的更多相关文章
- C++练习 | 掷骰子走到第n步的方法数(DFS)
玩家根据骰子的点数决定步数,骰子点数为1的时候走一步,以此类推.求玩家走到第n步总共有多少种投骰子的方法.输入为一个整数n,输出为投骰子的方法数. #include <iostream> ...
- 华为机试题 N阶楼梯的走法,每次走一步或者两步
在Stairs函数中实现该功能: 一个楼梯有N阶,从下往上走,一步可以走一阶,也可以走两阶,有多少种走法? (0<n<=30)<> 例如3阶楼梯有3种走法: 1.1.1 1.2 ...
- 九度OJ 1205 N阶楼梯上楼问题 -- 动态规划(递推求解)
题目地址:http://ac.jobdu.com/problem.php?pid=1205 题目描述: N阶楼梯上楼问题:一次可以走两阶或一阶,问有多少种上楼方式.(要求采用非递归) 输入: 输入包括 ...
- 九度OJ 1205 N阶楼梯上楼问题 (DP)
题目1205:N阶楼梯上楼问题 时间限制:1 秒 内存限制:128 兆 特殊判题:否 提交:2817 解决:1073 题目描写叙述: N阶楼梯上楼问题:一次能够走两阶或一阶.问有多少种上楼方式. (要 ...
- 华科机考:N阶楼梯上楼
时间限制:1秒空间限制:32768K 题目描述 N阶楼梯上楼问题:一次可以走两阶或一阶,问有多少种上楼方式.(要求采用非递归) 输入描述: 输入包括一个整数N,(1<=N<90). 输出描 ...
- 九度OJ 1205:N阶楼梯上楼问题 (斐波那契数列)
时间限制:1 秒 内存限制:128 兆 特殊判题:否 提交:3739 解决:1470 题目描述: N阶楼梯上楼问题:一次可以走两阶或一阶,问有多少种上楼方式.(要求采用非递归) 输入: 输入包括一个整 ...
- 九度oj 题目1205:N阶楼梯上楼问题
题目1205:N阶楼梯上楼问题 时间限制:1 秒 内存限制:128 兆 特殊判题:否 提交:4990 解决:2039 题目描述: N阶楼梯上楼问题:一次可以走两阶或一阶,问有多少种上楼方式.(要求采用 ...
- 题目1205:N阶楼梯上楼问题(2008年华中科技大学计算机保研机试真题:递推求解)
题目1205:N阶楼梯上楼问题 时间限制:1 秒 内存限制:128 兆 特殊判题:否 提交:2447 解决:927 题目描写叙述: N阶楼梯上楼问题:一次能够走两阶或一阶,问有多少种上楼方式. (要求 ...
- 计算机考研复试真题 N阶楼梯上楼问题
题目描述 N阶楼梯上楼问题:一次可以走两阶或一阶,问有多少种上楼方式.(要求采用非递归) 输入描述: 输入包括一个整数N,(1<=N<90). 输出描述: 可能有多组测试数据,对于每组数据 ...
随机推荐
- 第三章 document对象及数组
1.数组的使用(1)声明数组var 数组名=new Array();(2)数组赋值数组名[下标]=值: 2.数组声明,分配空间,赋值同时进行var 数组名=new Array(值1,值2....)va ...
- 第四篇——Struts2的引入多个配置文件
引入多个配置文件 在Struts2配置文件中使用include可引入多个配置文件. 项目实例 1.项目结构 2.pom.xml <project xmlns="http://maven ...
- Java代码走查具体考察点
代码走查具体考察点 一.参数检验 公共方法都要做参数的校验,参数校验不通过,需要明确抛出异常或对应响应码. 在接口中也明确使用验证注解修饰参数和返回值,作为一种协议要求调用方按注解约束传参,返回值验证 ...
- python 文本处理操作
打开和关闭文件 open 函数 用Python内置的open()函数打开一个文件,创建一个file对象,相关的方法才可以调用它进行读写 ''' 模式 描述 r 以只读方式打开文件.文件的指针将会放在文 ...
- 多条件搜索优化sql
SELECT ctm.* FROM crawltaskmanage ctm,urlmanage um WHERE (ctm.status='0' AND um.`urlId`=ctm.`urlId`) ...
- 在oracle中如何把前台传过来的日期字符串转换成正确格式
insert into ibill_sys_version(versionId,productCode,versionCode,versionDesc,versionUrl, upgradeWay,u ...
- angular7 DOM操作 及 @ViewChild
一.Angular 中的 dom 操作(原生 js) 二.Angular 中的 dom 操作(ViewChild) 三.父子组件中通过 ViewChild 调用子组件 的方法 1.调用子组件给子组件定 ...
- const与volatile
C或者C++基本上是按照从上到下.从左至右的顺序来读.但对于指针声明从某种意义上来讲是倒着的. C或者C++中每个声明都由两部分组成:零个或者多个声明说明符,一个或者多个用逗号隔开的声明符. cons ...
- MySQL基础和JDBC
第一章 命令行工具 mysqladmin:MySQL服务器管理工具 mysql:MySQL客服端链接工具 mysqldump 演示链接到服务器host=127.0.0.1,用户名为root,密码为空 ...
- servlet数据库登录
一.首先建立如下目录: 二.在html文件中编写代码 三.编写实体类 四.编写服务器相关代码 五.编写数据库代码 六.运行截图 输入错误: 输入正确: 链接:https://pan.baidu.com ...