【树形期望DP】BZOJ3566- [SHOI2014]概率充电器
【题目大意】
充电器由 n-1 条导线连通了 n 个充电元件。这n-1条导线均有一个通电概率p%,而每个充电元件本身有直接被充电的概率q[i]%。问期望有多少个充电元件处于充电状态?
【思路】
第一次做这种类型的题,还挺有意思的quq
显然这n个充电元件构成一棵树,考虑用树形DP。
我们用f1[i]表示当前元件仅仅因为直接充电或由孩子供电的概率,f2[i]表示当前元件处于充电状态的概率。
前铺两个知识点:对于两个相互独立的事件A、B,P(A+B)=P(A)+P(B)-P(A)*P(B),P(A)=(P(A+B)-P(B))/(1-P(B))。(!!)
我们可以用两次dfs求出f1、f2的值。
①对于f1,由于树中叶子节点不存在孩子,f1[叶子结点]=q[叶子结点],而对于非叶子节点,f1[i]=q[i]+∑f1[son]*p(注意这里的加法运算指代的是上述提到的概率加法)
②对于只由父亲贡献充电,我们考虑两个父子元件。对于父亲本身来说,给儿子充电的概率=总概率-儿子给自己充电的概率,pfa=f2[fa]-f1[now]*p(同样这里的减法用上面的概率加法)
f2[now]=f1[now]+pfa*p(同理这里的加法用的是上述的概率加法)
Over!!
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<vector>
#define EPS (1e-8)
using namespace std;
const int MAXN=+;
struct node
{
int to;
double p;
};
vector<node> E[MAXN];
double q[MAXN],f1[MAXN],f2[MAXN],ans; void addedge(int a,int b,double p)
{
E[a].push_back((node){b,p});
} bool dcmp(double a)
{
return fabs(a-)<EPS;
} void dfs1(int u,int fa)
{
for (int i=;i<E[u].size();i++)
{
int to=E[u][i].to;
if (to!=fa)
{
dfs1(to,u);
f1[u]=f1[u]+f1[to]*E[u][i].p-f1[u]*f1[to]*E[u][i].p;
}
}
} void dfs2(int u,int fa)
{
ans+=f2[u];
for (int i=;i<E[u].size();i++)
{
int to=E[u][i].to;
if (to!=fa)
{
if (dcmp(1.0-E[u][i].p*f1[to])) f2[to]=1.0;
else
{
double tmp=(f2[u]-E[u][i].p*f1[to])/(1.0-E[u][i].p*f1[to]);
f2[to]=f1[to]+tmp*E[u][i].p-f1[to]*tmp*E[u][i].p;
}
dfs2(to,u);
}
}
} void init()
{
int n;
scanf("%d",&n);
for(int i=;i<n-;i++)
{
int a,b;
double p;
scanf("%d%d%lf",&a,&b,&p);
addedge(a,b,p/);
addedge(b,a,p/);
}
for (int i=;i<=n;i++)
{
scanf("%lf",&q[i]);
f1[i]=q[i]/;
}
} void solve()
{
dfs1(,);
f2[]=f1[];
dfs2(,);
printf("%.6lf",ans);
} int main()
{
init();
solve();
return ;
}
【树形期望DP】BZOJ3566- [SHOI2014]概率充电器的更多相关文章
- BZOJ3566 SHOI2014 概率充电器 【概率DP】
BZOJ3566 SHOI2014 概率充电器 Description 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品——概率充电器: “采用全新纳米级加工技术,实现元件与导线能 ...
- BZOJ3566: [SHOI2014]概率充电器 树形+概率dp
3566: [SHOI2014]概率充电器 Time Limit: 40 Sec Memory Limit: 256 MBSubmit: 1888 Solved: 857[Submit][Stat ...
- BZOJ3566 [SHOI2014]概率充电器 (树形DP&概率DP)
3566: [SHOI2014]概率充电器 Description 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品——概率充电器:“采用全新纳米级加工技术,实现元件与导线能否通电 ...
- BZOJ3566:[SHOI2014]概率充电器(树形DP,概率期望)
Description 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品——概率充电器: “采用全新纳米级加工技术,实现元件与导线能否通电完全由真随机数决定!SHOI 概率充电器, ...
- [BZOJ3566][SHOI2014]概率充电器 换根树形DP
链接 题意:n个充电元件形成一棵树,每个点和每条边都有各自的充电概率,元件可以自身充电或者通过其他点和边间接充电,求充电状态元件的期望个数 题解 设1为根节点 设 \(f[x]\) 表示 \(x\) ...
- [BZOJ3566][SHOI2014]概率充电器(概率DP)
题意:树上每个点有概率有电,每条边有概率导电,求每个点能被通到电的概率. 较为套路但不好想的概率DP. 树形DP肯定先只考虑子树,自然的想法是f[i]表示i在只考虑i子树时,能有电的概率,但发现无法转 ...
- BZOJ3566 SHOI2014概率充电器(动态规划+概率期望)
设f[i]为i在子树内不与充电点连通的概率.则f[i]=(1-pi)·∏(1-qk+qk·f[k]). 然后从父亲更新答案.则f[i]=f[i]·(1-qfa+qfa*f[fa]/(1-qfa+qfa ...
- 2018.08.31 bzoj3566: [SHOI2014]概率充电器(概率dp+容斥原理)
传送门 概率dp好题啊. 用f[i]" role="presentation" style="position: relative;">f[i] ...
- BZOJ3566 : [SHOI2014]概率充电器
选个根把无根树转化成有根树, 设f[i]表示i不通电的概率 则 答案为对于枚举树根root进行DP后1-f[root]的和 直接算是O(n^2)的,但是n有500000,所以不能过. 对于这样一棵以1 ...
随机推荐
- Nginx详解十八:Nginx深度学习篇之Rewrite规则
Rewrite规则可以实现对url的重写,以及重定向 作用场景: 1.URL访问跳转,支持开发设计,如页面跳转,兼容性支持,展示效果等 2.SEO优化 3.维护:后台维护.流量转发等 4.安全 配置语 ...
- vue router.push(),router.replace(),router.go()和router.replace后需要返回两次的问题
转载:https://www.cnblogs.com/lwwen/p/7245083.html https://blog.csdn.net/qq_15385627/article/details/83 ...
- java操作office和pdf文件java读取word,excel和pdf文档内容
在平常应用程序中,对office和pdf文档进行读取数据是比较常见的功能,尤其在很多web应用程序中.所以今天我们就简单来看一下Java对word.excel.pdf文件的读取.本篇博客只是讲解简单应 ...
- [转] webpack之plugin内部运行机制
简介 webpack作为当前最为流行的模块打包工具,几乎所有的主流前端开发框架(React.Vue等)都会将其作为默认的模块加载和打包工具.通过简单的配置项,使用各种相关的loader和plugin, ...
- [转] react-router4 + webpack Code Splitting
项目升级为react-router4后,就尝试着根据官方文档进行代码分割.https://reacttraining.com/react-router/web/guides/code-splittin ...
- 标准I/O的缓冲
标准I/O实现了三种类型的用户缓冲,并为开发者提供了接口,可以控制缓冲区类型和大小. 无缓冲(Unbuffered) 不执行用户缓冲.数据直接提交给内核.因为这种无缓冲模式不支持用户缓冲(用户缓冲一般 ...
- Windows 系统判断MD5 值的办法
Linux 系统的文件要传到Windows系统里面,传输过程中网络不稳定,为了判断文件是否完整传输,所以就用md5的方式判断是否同一个文件 Linux系统 [root@augusite ~]# md5 ...
- ELK 环境搭建4-Kafka + zookeeper
一.安装前准备 1.节点 192.168.30.41 192.168.30.42 192.168.30.43 2.操作系统: Centos7.5 3.安装包 a.java8: jdk-8u181-li ...
- HtmlTestRunner
1.一般生成报告时,会使用时间来作为报告名称的一部分,引入time这个第三方,使用以下方式格式化当前时间 下面运行最终结果:2019-03-29-14_29_18------>年-月-日-时-分 ...
- PHP生成二维码,PHPQRCode
声明一个方法,直接调用即可 <?php /** * 功能:生成二维码 * @param string $qr_data 手机扫描后要跳转的网址 * @param string $qr_level ...