Convolutional neural network (CNN) - Pytorch版
import torch
import torch.nn as nn
import torchvision
import torchvision.transforms as transforms # 配置GPU或CPU设置
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') # 超参数设置
num_epochs = 5
num_classes = 10
batch_size = 100
learning_rate = 0.001 # 下载 MNIST dataset
train_dataset = torchvision.datasets.MNIST(root='./data/',
train=True,
transform=transforms.ToTensor(),# 将PIL Image或者 ndarray 转换为tensor,并且归一化至[0-1],归一化至[0-1]是直接除以255
download=True) test_dataset = torchvision.datasets.MNIST(root='./data/',
train=False,
transform=transforms.ToTensor())# 将PIL Image或者 ndarray 转换为tensor,并且归一化至[0-1],归一化至[0-1]是直接除以255 # 训练数据加载,按照batch_size大小加载,并随机打乱
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
batch_size=batch_size,
shuffle=True)
# 测试数据加载,按照batch_size大小加载
test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
batch_size=batch_size,
shuffle=False) # Convolutional neural network (two convolutional layers) 2层卷积
class ConvNet(nn.Module):
def __init__(self, num_classes=10):
super(ConvNet, self).__init__()
self.layer1 = nn.Sequential(
nn.Conv2d(1, 16, kernel_size=5, stride=1, padding=2),
nn.BatchNorm2d(16),
nn.ReLU(),
nn.MaxPool2d(kernel_size=2, stride=2))
self.layer2 = nn.Sequential(
nn.Conv2d(16, 32, kernel_size=5, stride=1, padding=2),
nn.BatchNorm2d(32),
nn.ReLU(),
nn.MaxPool2d(kernel_size=2, stride=2))
self.fc = nn.Linear(7 * 7 * 32, num_classes) def forward(self, x):
out = self.layer1(x)
out = self.layer2(out)
out = out.reshape(out.size(0), -1)
out = self.fc(out)
return out model = ConvNet(num_classes).to(device)
print(model) # ConvNet(
# (layer1): Sequential(
# (0): Conv2d(1, 16, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
# (1): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
# (2): ReLU()
# (3): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False))
# (layer2): Sequential(
# (0): Conv2d(16, 32, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
# (1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
# (2): ReLU()
# (3): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False))
# (fc): Linear(in_features=1568, out_features=10, bias=True)) # 损失函数与优化器设置
# 损失函数
criterion = nn.CrossEntropyLoss()
# 优化器设置 ,并传入CNN模型参数和相应的学习率
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate) # 训练CNN模型
total_step = len(train_loader)
for epoch in range(num_epochs):
for i, (images, labels) in enumerate(train_loader):
images = images.to(device)
labels = labels.to(device) # 前向传播
outputs = model(images)
# 计算损失 loss
loss = criterion(outputs, labels) # 反向传播与优化
# 清空上一步的残余更新参数值
optimizer.zero_grad()
# 反向传播
loss.backward()
# 将参数更新值施加到RNN model的parameters上
optimizer.step()
# 每迭代一定步骤,打印结果值
if (i + 1) % 100 == 0:
print ('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}'
.format(epoch + 1, num_epochs, i + 1, total_step, loss.item())) # 测试模型
# model.train model.eval 在测试模型时在前面使用:model.eval() ; 在训练模型时会在前面加上:model.train()
# 让model变成测试模式,是针对model 在训练时和评价时不同的 Batch Normalization 和 Dropout 方法模式
# eval()时,让model变成测试模式, pytorch会自动把BN和DropOut固定住,不会取平均,而是用训练好的值,
# 不然的话,一旦test的batch_size过小,很容易就会被BN层导致生成图片颜色失真极大。
model.eval() # eval mode (batchnorm uses moving mean/variance instead of mini-batch mean/variance)
with torch.no_grad():
correct = 0
total = 0
for images, labels in test_loader:
images = images.to(device)
labels = labels.to(device)
outputs = model(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('Test Accuracy of the model on the 10000 test images: {} %'.format(100 * correct / total)) # 保存已经训练好的模型
# Save the model checkpoint
torch.save(model.state_dict(), 'model.ckpt')
Convolutional neural network (CNN) - Pytorch版的更多相关文章
- 卷积神经网络(Convolutional Neural Network, CNN)简析
目录 1 神经网络 2 卷积神经网络 2.1 局部感知 2.2 参数共享 2.3 多卷积核 2.4 Down-pooling 2.5 多层卷积 3 ImageNet-2010网络结构 4 DeepID ...
- Recurrent neural network (RNN) - Pytorch版
import torch import torch.nn as nn import torchvision import torchvision.transforms as transforms # ...
- 斯坦福大学卷积神经网络教程UFLDL Tutorial - Convolutional Neural Network
Convolutional Neural Network Overview A Convolutional Neural Network (CNN) is comprised of one or mo ...
- 卷积神经网络(Convolutional Neural Network,CNN)
全连接神经网络(Fully connected neural network)处理图像最大的问题在于全连接层的参数太多.参数增多除了导致计算速度减慢,还很容易导致过拟合问题.所以需要一个更合理的神经网 ...
- 深度学习FPGA实现基础知识10(Deep Learning(深度学习)卷积神经网络(Convolutional Neural Network,CNN))
需求说明:深度学习FPGA实现知识储备 来自:http://blog.csdn.net/stdcoutzyx/article/details/41596663 说明:图文并茂,言简意赅. 自今年七月份 ...
- 【转载】 卷积神经网络(Convolutional Neural Network,CNN)
作者:wuliytTaotao 出处:https://www.cnblogs.com/wuliytTaotao/ 本作品采用知识共享署名-非商业性使用-相同方式共享 4.0 国际许可协议进行许可,欢迎 ...
- CNN(Convolutional Neural Network)
CNN(Convolutional Neural Network) 卷积神经网络(简称CNN)最早可以追溯到20世纪60年代,Hubel等人通过对猫视觉皮层细胞的研究表明,大脑对外界获取的信息由多层的 ...
- 论文阅读(Weilin Huang——【TIP2016】Text-Attentional Convolutional Neural Network for Scene Text Detection)
Weilin Huang--[TIP2015]Text-Attentional Convolutional Neural Network for Scene Text Detection) 目录 作者 ...
- 论文笔记:(CVPR2019)Relation-Shape Convolutional Neural Network for Point Cloud Analysis
目录 摘要 一.引言 二.相关工作 基于视图和体素的方法 点云上的深度学习 相关性学习 三.形状意识表示学习 3.1关系-形状卷积 建模 经典CNN的局限性 变换:从关系中学习 通道提升映射 3.2性 ...
随机推荐
- 《挑战30天C++入门极限》新手入门:关于C++中的内联函数(inline)
新手入门:关于C++中的内联函数(inline) 在c++中,为了解决一些频繁调用的小函数大量消耗栈空间或者是叫栈内存的问题,特别的引入了inline修饰符,表示为内联函数. 可能说到这里,很 ...
- 性能测试JMeter应用篇---同线程组、跨线程组实现token共用
方式一:将token值取出,设为全局变量,同线程组内可共用token值 1.登录请求如下: 2.从登录请求返回json字符串中提取token值,保存为变量token_0: 3.将token设置为全局变 ...
- 【转】Linux 利用 PROMPT_COMMAND 实现审计功能
linux历史命令记录在history,在用户退出的时候写入,不过有时候可以直接绕过去,不让写入,比如shutdown now,还有在一些情况下也是不予保存的,这让人很头疼 使用PROMPT_COMM ...
- 11.linux dns服务器建立和安装apache
dns服务器建立 1.安装bind建立dns服务器 yum install bind -y 2.安装好修改配置文件:vim /etc/named.conf 修改: listen-on ...
- web前端兼容性问题
传送门:https://www.cnblogs.com/zhoudawei/p/7497544.html
- 【软工实践】团队Git现场编程实战
组长博客链接 博客链接 组员职责分工 队员 职责分工 恩泽 进行任务的划分与安排,调用API,负责餐饮商铺及商圈信息的获取 金海 解析API返回的json数据,提取有关信息 君曦 部分算法编写 季城 ...
- Understanding Action Filters (C#) 可以用来做权限检查
比如需要操作某一张表league的数据,multi-tenancy的模式,每一行数据都有一个租户id的字段. 那么在api调用操作的时候,我们需要检查league的id,是否和当前用户所属的租户信息一 ...
- ln bug
/home/hdp/testcpy sudo ln -s . /usr/lib/cpy390sourcecode cpy390sourcecode -> . sudo ln -s pwd /us ...
- Docs-.NET-C#-指南-语言参考-关键字:C# 关键字
ylbtech-Docs-.NET-C#-指南-语言参考-关键字:C# 关键字 1.返回顶部 1. C# 关键字 2017/03/07 关键字是预定义的保留标识符,对编译器有特殊意义. 除非前面有 @ ...
- Spring cloud微服务安全实战-5-2前端页面改造
创建一个新的maveb项目,做一个admin的管理界面 用angular写前面的页面. 先吧dependcency引用引进来. 前端的插件能帮我在springboot里面搭建出一个nodeJS的环境来 ...