国家集训队 Crash 的文明世界(第二类斯特林数+换根dp)
题意
题目链接:https://www.luogu.org/problem/P4827
给定一棵 \(n\) 个节点的树和一个常数 \(k\) ,对于树上的每一个节点 \(i\) ,求出 \(\displaystyle \sum_{i=1}^n{\rm dist}^k(i,j)\),其中 \(\rm{dist}\) 函数表示树上两点距离。
\(1 \leq n \leq 50000\)
\(1\leq k \leq 150\)
思路
看到求答案 \(k\) 次方的问题,应该联想到第二类斯特林数,因为第二类斯特林数有如下的式子:
\]
可以理解成,\(n^m\) 表示把 \(m\) 个不同的球放在 \(n\) 个不同的盒子中;后面的组合数表示从 \(n\) 个盒子中选出 \(i\) 个,斯特林数表示把 \(m\) 个球分成 \(i\) 个无序集合,阶乘表示排列。另外,循环上界写乘 \(n\),\(m\) 或者无穷大都是一样的。
假设我们已经维护住了 \(n^m\) ,我们现在想知道 \((n+1)^m\) ,怎么办呢?套入上面的式子,我们得到:
(n+1)^m&=\sum_{i=0}^m{n+1\choose i}\left\{{m\atop i}\right\}i!\\
&=\sum_{i=0}^m{\huge(}{n\choose i}+{n\choose i-1}{\huge)}\left\{{m\atop i}\right\}i!
\end{align*}
\]
我们发现,与 \(n^m\) 的展开式相比,\(\displaystyle \left\{{m\atop i}\right\}i!\) 没有变,每个组合数都加上前一项。这似乎在启示我们把组合数独立出来。定义数组 \(\{a_n\}\) ,用 \(a_i\) 表示 \(\displaystyle\left\{{m\atop i}\right\}i!\) 的系数,于是,我们得到了一个“数据结构”,能维护一个 \(n^m\) 形式的数,支持给 \(n\) 加一。不难发现,加上前一项的操作可以把过程逆转,于是这个“数据结构”也能支持给 \(n\) 减一,我们姑且称之为“斯特林机”(名字瞎取的,勿喷)。
只能维护一个数也太鸡肋了吧?但我们不难发现,只要 \(m\) 相同,多个 \(n^m\) 形式的数可以一起维护,直接把每个斯特林机的 \(a_i\) 加在一起即可,我们可以称之为合并两个斯特林机;类似的,我们也可以从一个斯特林机中减去另一个斯特林机。这个 \(\{a_i\}\) 数组就像插值一样,用一些方便计算的量整体运算,从而得到最后结果。
依靠斯特林机,这道题似乎就变得异常的简单。我们先考虑如何求出 \(1\) 号节点的答案。
定义 \(dp_u\) 为 \(\displaystyle\sum_{v\in{\rm subtree(u)}}{\rm dist}^k(u,v)\) 。由于都是 \(k\) 次方,那可以把 \(dp_u\) 开成一个斯特林机的形式。初值每个节点的斯特林机中只有自己,为 \(0^0\),每次转移就对儿子的斯特林机执行各元素加一的操作,再加到自己身上。于是,我们得到了以 \(1\) 为根点答案。然后我们发现,转移中每种操作都能找到其对应的逆操作,于是我们可以很快的写出一个换根 \(dp\) 。
代码
重载了很多运算符,看着挺优美的。
#include<bits/stdc++.h>
#define FOR(i, x, y) for(int i = (x), i##END = (y);i <= i##END; ++i)
#define DOR(i, x, y) for(int i = (x), i##END = (y);i >= i##END; --i)
template<typename T, typename _T>inline bool chk_min(T &x, const _T y){return y < x? x = y, 1 : 0;}
template<typename T, typename _T>inline bool chk_max(T &x, const _T y){return x < y? x = y, 1 : 0;}
typedef long long ll;
const int N = 50005;
const int P = 10007;
const int M = 153;
int C[M][M], S[M][M], fac[M];
inline void plseq(int &x, int y) {(x += y) >= P ? x -= P : 0;}
inline void mnseq(int &x, int y) {(x -= y) < 0 ? x += P : 0;}
template<const int N, const int M, typename T> struct Linked_List
{
int head[N], nxt[M], tot; T to[M];
Linked_List() {clear();}
T &operator [](const int x) {return to[x];}
void clear() {memset(head, -1, sizeof(head)), tot = 0;}
void add(int u, T v) {to[tot] = v, nxt[tot] = head[u], head[u] = tot++;}
#define EOR(i, G, u) for(int i = G.head[u]; ~i; i = G.nxt[i])
};
int sm;
struct Stirling_Machine
{
int a[M];
Stirling_Machine() {}
Stirling_Machine(int v) {FOR(i, 0, sm) a[i] = C[v][i];}
void operator +=(const Stirling_Machine &_) {FOR(i, 0, sm) plseq(a[i], _.a[i]);}
void operator -=(const Stirling_Machine &_) {FOR(i, 0, sm) mnseq(a[i], _.a[i]);}
void operator ++() {DOR(i, sm, 1) plseq(a[i], a[i - 1]);}
void operator --() {FOR(i, 1, sm) mnseq(a[i], a[i - 1]);}
int query()
{
int ans = 0;
FOR(i, 0, sm) plseq(ans, 1ll * a[i] * S[sm][i] % P * fac[i] % P);
return ans;
}
};
Linked_List<N, N << 1, int> G;
Stirling_Machine dp[N];
int ans[N];
int n;
void dfs(int u, int f)
{
dp[u] = Stirling_Machine(0);
EOR(i, G, u)
{
int v = G[i];
if(v == f) continue;
dfs(v, u);
++dp[v];
dp[u] += dp[v];
}
}
void redfs(int u, int f)
{
ans[u] = dp[u].query();
EOR(i, G, u)
{
int v = G[i];
if(v == f) continue;
dp[u] -= dp[v];
--dp[v];
++dp[u];
dp[v] += dp[u];
redfs(v, u);
dp[v] -= dp[u];
--dp[u];
++dp[v];
dp[u] += dp[v];
}
}
int main()
{
fac[0] = fac[1] = 1;
FOR(i, 2, M - 1) fac[i] = 1ll * fac[i - 1] * i % P;
FOR(i, 0, M - 1) FOR(j, 0, i)
C[i][j] = (j == 0 || j == i ? 1 : (C[i - 1][j - 1] + C[i - 1][j]) % P);
S[0][0] = 1;
FOR(i, 1, M - 1) FOR(j, 1, i)
S[i][j] = (S[i - 1][j - 1] + 1ll * j * S[i - 1][j]) % P;
scanf("%d%d", &n, &sm);
FOR(i, 1, n - 1)
{
int u, v;
scanf("%d%d", &u, &v);
G.add(u, v), G.add(v, u);
}
dfs(1, 0);
redfs(1, 0);
FOR(i, 1, n) printf("%d\n", ans[i]);
return 0;
}
国家集训队 Crash 的文明世界(第二类斯特林数+换根dp)的更多相关文章
- [国家集训队] Crash 的文明世界(第二类斯特林数)
题目 [国家集训队] Crash 的文明世界 前置 斯特林数\(\Longrightarrow\)斯特林数及反演总结 做法 \[\begin{aligned} ans_x&=\sum\limi ...
- BZOJ 2159: Crash 的文明世界 第二类斯特林数+树形dp
这个题非常巧妙啊~ #include <bits/stdc++.h> #define M 170 #define N 50003 #define mod 10007 #define LL ...
- P4827 [国家集训队] Crash 的文明世界(第二类斯特林数+树形dp)
传送门 对于点\(u\),所求为\[\sum_{i=1}^ndis(i,u)^k\] 把后面那堆东西化成第二类斯特林数,有\[\sum_{i=1}^n\sum_{j=0}^kS(k,j)\times ...
- 解题:国家集训队 Crash 的文明世界
题面 这种套着高次幂的统计问题一般都要用到第二类斯特林数和自然数幂的关系:$a^k=\sum\limits_{i=0}^{k}S_k^iC_a^i*i!$ 那么对于每个点$x$有: $ans_x=\s ...
- 【[国家集训队] Crash 的文明世界】
先写一个五十分的思路吧 首先这道题有一个弱化版 [POI2008]STA-Station 相当于\(k=1\),于是就是一个非常简单的树形\(dp\)的\(up\ \ and\ \ down\)思想 ...
- 洛谷 P4827 [国家集训队] Crash 的文明世界
题目描述 给你一棵 n 个点的树,对于树上的每个节点 i,求 \(\sum_{j=1}^ndis(i,j)^k\).其中 \(dis(i,j)\) 为两点在树上的距离. 输入格式 第一行两个整 ...
- [题解] LuoguP4827 [国家集训队] Crash 的文明世界
传送门 这个题......我谔谔 首先可以考虑换根\(dp\),但到后来发现二项式定理展开过后需要维护\(k\)个值,同时每个值也要\(O(k)\)的时间按二项式定理算 当然fft优化过后就是k lo ...
- [国家集训队] Crash 的文明世界
不错的树形$ DP$的题 可为什么我自带大常数啊$ cry$ 链接:here 题意:给定一棵$ n$个节点的树,边权为$ 1$,对于每个点$ x$求$ \sum\limits_{i=1}^n dist ...
- [国家集训队] Crash的文明世界
Description 给定一棵 \(n\) 个点的树,对于每个点 \(i\) 求 \(S(i)=\sum\limits_{j=1}^n \operatorname{dist(i,j)}^k\) .\ ...
随机推荐
- python小项目(python实现鉴黄)源码
import sys import os import _io from collections import namedtuple from PIL import Image class Nude( ...
- F#周报2019年第22期
新闻 2019年实用F#挑战结果 FSharp.Formatting正在确定维护者 实用F#挑战的赢家们 使用F#在分布式系统中进行故障检测与共识 F#里的Cloudflare Worker Juni ...
- 异步编程,await async入门
网上很多异步编程的文章,提供一篇入门: 异步编程模型 .net支持3种异步编程模式: msdn:https://docs.microsoft.com/zh-cn/dotnet/standard/asy ...
- java 线程之线程状态
Thread 类中的线程状态: public enum State { NEW,//新建 RUNNABLE,// 执行态 BLOCKED, //等待锁(在获取锁的池子里) WAITING,//等待状态 ...
- 智能家居-3.基于esp8266的语音控制系统(软件篇)
智能家居-1.基于esp8266的语音控制系统(开篇) 智能家居-2.基于esp8266的语音控制系统(硬件篇) 智能家居-3.基于esp8266的语音控制系统(软件篇) 赞赏支持 QQ:505645 ...
- 腾讯WeTest亮相—腾讯全球数字生态大会现场
2019年5月21-23日腾讯全球数字生态大会在云南昆明滇池国际会展中心顺利召开. 此次大会上万人到场参与,大会由主峰会.分论坛.数字生态专题展会以及腾讯数字生态人物颁奖盛典四大板块构成.作为腾讯战略 ...
- IOS疯狂基础之观察者模式
转自:http://blog.csdn.net/wudizhukk/article/details/8981535 一.KVO Key-Value Observing,它提供一种机制,当指定的对象的属 ...
- AI2(App Inventor 2)离线版服务器(AI伴侣2.47版)
提供这个版本的原因: 与app.gzjkw.net的源代码版本尽可能的接近,这样导入app.gzjkw.net源文件的时候不会有“该项目由新版App Inventor系统创建,我们仍然尝试将其加载,但 ...
- 2.监控软件zabbix-客户端安装
环境准备 Zabbix-Agent只要http://www.zabbix.com/download.php中可以下载的Zabbix-Agent均可以搭建Zabbix-Agent环境,本文选用CentO ...
- 8.InfluxDB-InfluxQL基础语法教程--ORDER BY子句
本文翻译自官网,官网地址:(https://docs.influxdata.com/influxdb/v1.7/query_language/data_exploration/) 在InfluxDB中 ...