朴素贝叶斯算法的python实现 -- 机器学习实战
import numpy as np
import re #词表到向量的转换函数
def loadDataSet():
postingList = [['my', 'dog', 'has', 'flea', 'problems', 'help', 'please'],
['maybe', 'not', 'take', 'him', 'to', 'dog', 'park', 'stupid'],
['my', 'dalmation', 'is', 'so', 'cute', 'I', 'love', 'him'],
['stop', 'posting', 'stupid', 'worthless', 'garbage'],
['mr', 'licks', 'ate', 'my', 'steak', 'how', 'to', 'stop', 'him'],
['quit', 'buying', 'worthless', 'dog', 'food', 'stupid']]
classVec =[0,1,0,1,0,1] #1代表侮辱性文字,0代表正常言论
return postingList, classVec #创建一个包含在所有文档中出现的不重复词的列表
def createVocabList(dataSet):
vocabSet = set([]) #创建一个空集
for document in dataSet:
vocabSet = vocabSet | set(document) #创建两个集合的并集
return list(vocabSet) #词集模型:文档中的每个词在词集中只出现一次
def setOfWords2Vec(vocabList, inputSet):
returnVec = [0] * len(vocabList) #创建长度与词汇表相同,元素都为0的向量
for word in inputSet:
if word in vocabList: #将出现在文档中的词汇在词汇表中对应词汇位置置1
returnVec[vocabList.index(word)] = 1
else:
print ("the word: %s isn't in my Vocabulary" % (word))
return returnVec #词袋模型: 文档中的每个词在词袋中可以出现多次
def bagOfWords2VecMN(vocabList, inputSet):
returnVec = [0] * len(vocabList)
for word in inputSet:
if word in vocabList:
returnVec[vocabList.index(word)] += 1
return returnVec #朴素贝叶斯分类器训练函数
def trainNB0(trainMatrix, trainCategory):
numTrainDocs = len(trainMatrix)
numWords = len(trainMatrix[0])
pAbusive = sum(trainCategory)/float(numTrainDocs)
#p0Num = np.zeros(numWords)
#p1Num = np.zeros(numWords)
#p0Denom = 0.0
#p1Denom = 0.0
p0Num = np.ones(numWords) #|利用贝叶斯分类器对文档进行分类时,要计算多个概率的乘积以获得文档属于某个类别的概率,
p1Num = np.ones(numWords) #|如果其中一个概率值为0,那么最后的乘积也为0.
p0Denom = 2.0 #|为降低这种影响,可以将所有词的出现数初始化为1,并将分母初始化为2
p1Denom = 2.0 #|(拉普拉斯平滑)
for i in range(numTrainDocs):
if trainCategory[i] == 1:
p1Num += trainMatrix[i]
p1Denom += sum(trainMatrix[i])
else:
p0Num += trainMatrix[i]
p0Denom += sum(trainMatrix[i])
#p1Vect = p1Num/p1Denom
#p0Vect = p0Num/p0Denom
p1Vect = np.log(p1Num/p1Denom) #|当太多很小的数相乘时,程序会下溢出,对乘积取自然对数可以避免下溢出或浮点数舍入导致的错误
p0Vect = np.log(p0Num/p0Denom) #|同时,采用自然对数进行处理不会有任何损失。ln(a*b)=ln(a)+ln(b)
return p0Vect, p1Vect, pAbusive #朴素贝叶斯分类函数
def classifyNB(vec2Classify, p0Vec, p1Vec, pClass1):
p1 = sum(vec2Classify * p1Vec) + np.log(pClass1) #元素相乘得到概率值
p0 = sum(vec2Classify * p0Vec) + np.log(1.0 - pClass1)
if p1 > p0:
return 1
else:
return 0 #便利函数,封装所有操作
def testingNB():
listOposts, listClasses = loadDataSet()
myVocabList = createVocabList(listOposts)
trainMat = []
for postinDoc in listOposts:
trainMat.append(setOfWords2Vec(myVocabList, postinDoc))
p0V, p1V, pAb = trainNB0(np.array(trainMat), np.array(listClasses)) #获取训练文档返回的概率值
testEntry = ['love', 'my', 'dalmation'] #正面测试文档
thisDoc = np.array(setOfWords2Vec(myVocabList, testEntry)) #词汇表
print (testEntry, 'classified as:', classifyNB(thisDoc, p0V, p1V, pAb)) #分类结果
testEntry = ['stupid', 'garbage'] #侮辱性测试文档
thisDoc = np.array(setOfWords2Vec(myVocabList, testEntry)) #词汇表
print (testEntry, 'classified as:', classifyNB(thisDoc, p0V, p1V, pAb)) #分类结果 #文件解析
def textParse(bigString):
listOfTokens = re.split(r'\W+', bigString) #原书中的模式为\W*,匹配0个或多个
return [tok.lower() for tok in listOfTokens if len(tok) > 2] #完整的垃圾邮件测试函数
def spamTest():
docList=[]; classList=[]; fullText=[]
for i in range(1, 26): #导入并解析文件
wordList = textParse(open('email/spam/%d.txt' % i).read())
docList.append(wordList)
fullText.extend(wordList)
classList.append(1)
wordList = textParse(open('email/ham/%d.txt' % i).read())
docList.append(wordList)
fullText.extend(wordList)
classList.append(0)
vocabList = createVocabList(docList)
trainingSet = list(range(50)); testSet=[]
for i in range(10): #随机构建训练集与测试集
randIndex = int(np.random.uniform(0, len(trainingSet)))
testSet.append(trainingSet[randIndex])
del(trainingSet[randIndex])
trainMat=[]; trainClasses=[]
for docIndex in trainingSet:
trainMat.append(setOfWords2Vec(vocabList, docList[docIndex]))
trainClasses.append(classList[docIndex])
p0V, p1V, pSpam = trainNB0(np.array(trainMat), np.array(trainClasses))
errorCount = 0
for docIndex in testSet: #对测试集分类并计算错误率
wordVector = setOfWords2Vec(vocabList, docList[docIndex])
if classifyNB(np.array(wordVector), p0V, p1V, pSpam) != classList[docIndex]:
errorCount += 1
print ('The error rate is: ', float(errorCount/len(testSet))) #Simple unit test of func: loadDataSet(), createVocabList(), setOfWords2Vec
#listOPosts, listClassed = loadDataSet()
#myVocabList =createVocabList(listOPosts)
#print (myVocabList)
#res = setOfWords2Vec(myVocabList, listOPosts[0])
#print (res) #Simple unit test of func: trainNB0()
#listOposts, listClasses = loadDataSet()
#myVocabList = createVocabList(listOposts)
#trainMat = []
#for postinDoc in listOposts:
# trainMat.append(setOfWords2Vec(myVocabList, postinDoc))
#p0V, p1V, pAb = trainNB0(trainMat, listClasses)
#print (p0V); print (p1V); print (pAb) #Simple unit test of func: testingNB()
#testingNB() spamTest()
Output:
The error rate is: 0.1
背景:为什么要做平滑处理?
零概率问题,就是在计算实例的概率时,如果某个量x,在观察样本库(训练集)中没有出现过,会导致整个实例的概率结果是0。在文本分类的问题中,当一个词语没有在训练样本中出现,该词语调概率为0,使用连乘计算文本出现概率时也为0。这是不合理的,不能因为一个事件没有观察到就武断的认为该事件的概率是0。
拉普拉斯的理论支撑
为了解决零概率的问题,法国数学家拉普拉斯最早提出用加1的方法估计没有出现过的现象的概率,所以加法平滑也叫做拉普拉斯平滑。
假定训练样本很大时,每个分量x的计数加1造成的估计概率变化可以忽略不计,但可以方便有效的避免零概率问题。
根据现实情况修改分类器
除了平滑处理,另一个遇到的问题是下溢出,这是由于太多很小的数相乘造成的。当计算乘积P(w0|c1)P(w1|c1)P(w2|c1)...P(wN|c1)时, 由于大部分因子都非常小,所以程序会下溢出或者得不到正确的答案。一种解决办法是对乘积取自然对数。在代数中有ln(a*b) = ln(a) + ln(b),于是通过求对数可以避免下溢出或者浮点数舍入导致的错误。同时,采用自然对数进行处理不会有任何损失。
Reference:
《机器学习实战》
朴素贝叶斯算法的python实现 -- 机器学习实战的更多相关文章
- 朴素贝叶斯算法的python实现方法
朴素贝叶斯算法的python实现方法 本文实例讲述了朴素贝叶斯算法的python实现方法.分享给大家供大家参考.具体实现方法如下: 朴素贝叶斯算法优缺点 优点:在数据较少的情况下依然有效,可以处理多类 ...
- 朴素贝叶斯算法的python实现
朴素贝叶斯 算法优缺点 优点:在数据较少的情况下依然有效,可以处理多类别问题 缺点:对输入数据的准备方式敏感 适用数据类型:标称型数据 算法思想: 朴素贝叶斯比如我们想判断一个邮件是不是垃圾邮件,那么 ...
- 朴素贝叶斯算法的python实现-乾颐堂
算法优缺点 优点:在数据较少的情况下依然有效,可以处理多类别问题 缺点:对输入数据的准备方式敏感 适用数据类型:标称型数据 算法思想: 朴素贝叶斯 比如我们想判断一个邮件是不是垃圾邮件,那么我们知道的 ...
- 吴裕雄--天生自然python机器学习:朴素贝叶斯算法
分类器有时会产生错误结果,这时可以要求分类器给出一个最优的类别猜测结果,同 时给出这个猜测的概率估计值. 概率论是许多机器学习算法的基础 在计算 特征值取某个值的概率时涉及了一些概率知识,在那里我们先 ...
- Python机器学习笔记:朴素贝叶斯算法
朴素贝叶斯是经典的机器学习算法之一,也是为数不多的基于概率论的分类算法.对于大多数的分类算法,在所有的机器学习分类算法中,朴素贝叶斯和其他绝大多数的分类算法都不同.比如决策树,KNN,逻辑回归,支持向 ...
- Python机器学习算法 — 朴素贝叶斯算法(Naive Bayes)
朴素贝叶斯算法 -- 简介 朴素贝叶斯法是基于贝叶斯定理与特征条件独立假设的分类方法.最为广泛的两种分类模型是决策树模型(Decision Tree Model)和朴素贝叶斯模型(Naive Baye ...
- 机器学习---用python实现朴素贝叶斯算法(Machine Learning Naive Bayes Algorithm Application)
在<机器学习---朴素贝叶斯分类器(Machine Learning Naive Bayes Classifier)>一文中,我们介绍了朴素贝叶斯分类器的原理.现在,让我们来实践一下. 在 ...
- 机器学习:python中如何使用朴素贝叶斯算法
这里再重复一下标题为什么是"使用"而不是"实现": 首先,专业人士提供的算法比我们自己写的算法无论是效率还是正确率上都要高. 其次,对于数学不好的人来说,为了实 ...
- 朴素贝叶斯算法--python实现
朴素贝叶斯算法要理解一下基础: [朴素:特征条件独立 贝叶斯:基于贝叶斯定理] 1朴素贝叶斯的概念[联合概率分布.先验概率.条件概率**.全概率公式][条件独立性假设.] 极大似然估计 ...
随机推荐
- java---EL与ONGL的区别
EL表达式: >>单纯在jsp页面中出现,是在四个作用域中取值,page,request,session,application.>>如果在struts环境中,它除了有在上面的 ...
- nodejs基础 -- 交互式解析器(REPL)
------------类似在浏览器中调试js代码----------------------- Node.js REPL(交互式解释器) Node.js REPL(Read Eval Print L ...
- 批量快速的导入导出Oracle的数据(spool缓冲池、java实现)
1. Java代码实现思路 BufferedWriter writefile = new BufferedWriter(new FileWriter(file)); writefile.write( ...
- ASP.NET MVC传递参数(model), 如何保持TempData的持久性
一看到此标题,相信你也会.因为路由是可以从URL地址栏传过去的. 但是Insus.NET不想在地址栏传递,还是一个条件是jQuery的Ajax进行POST的.Insus.NET不清楚别人是怎样处理的, ...
- error C2065:!错误:未定义标识符“pBuf);”
error C2065: “pBuf):”: 未声明的标识符 错误原因:第二个括号)使用的是中文符号!还有最后那个分号! 改回来就好了~ 原错误: 修正后错误消失:
- [转]五分钟看懂UML类图与类的关系详解
在画类图的时候,理清类和类之间的关系是重点.类的关系有泛化(Generalization).实现(Realization).依赖(Dependency)和关联(Association).其中关联又分为 ...
- 编写高性能的jQuery代码
jQuery Optimization 现在jQuery已经出现在很多项目中,然而许多同学忽略了他的性能问题以及代码质量问题, 下面是我对jQuery的一些性能方面的学习. 选择器 选择器是jQuer ...
- 创建ros的程序包--3
创建ros的程序包(原创博文,转载请标明出处--周学伟http://www.cnblogs.com/zxouxuewei/) 1.一个catkin程序包由什么组成? 一个程序包要想称为catkin程序 ...
- UVa 10450 - World Cup Noise
题目:构造一个01串,使得当中的1不相邻,问长度为n的串有多少中. 分析:数学,递推数列. 设长度为n的串有n个.则有递推关系:f(n)= f(n-1)+ f(n-2): 长度为n的结束可能是0或者1 ...
- Java精选笔记_JSTL(JSP标准标签库)
JSTL(JSP标准标签库) JSTL入门 JavaServer Pages Standard Tag Library:JSP标准标签库 在JSP中可以通过Java代码来获取信息,但是过多的Java代 ...