算法08 五大查找之:二叉排序树(BSTree)
上一篇总结了索引查找,这一篇要总结的是二叉排序树(Binary Sort Tree),又称为二叉查找树(Binary Search Tree) ,即BSTree。
构造一棵二叉排序树的目的,其实并不是为了排序,而是为了提高查找和插入删除的效率。
什么是二叉排序树呢?二叉排序树具有以下几个特点。
(1)若根节点有左子树,则左子树的所有节点都比根节点小。
(2)若根节点有右子树,则右子树的所有节点都比根节点大。
(3)根节点的左,右子树也分别是二叉排序树。
1、二叉排序树的图示
下面是二叉排序树的图示,通过它可以加深对二叉排序树的理解。

2、二叉排序树常见的操作及思路
下面是二叉排序树常见的操作及思路。
2-1、插入节点
思路:比如我们要插入数字20到这棵二叉排序树中。那么步骤如下:
(1)首先将20与根节点进行比较,发现比根节点小,所以继续与根节点的左子树30比较。
(2)发现20比30也要小,所以继续与30的左子树10进行比较。
(3)发现20比10要大,所以就将20插入到10的右子树中。
此时的二叉排序树如下图:

2-2、查找节点
比如我们要查找节点10,那么思路如下:
(1)还是一样,首先将10与根节点50进行比较,发现比根节点要小,所以继续与根节点的左子树30进行比较。
(2)发现10比左子树30要小,所以继续与30的左子树10进行比较。
(3)发现两值相等,即查找成功,返回10的位置。
2-3、删除节点
删除节点的情况相对复杂,主要分为以下三种情形:
(1)删除的是叶节点(即没有孩子节点的)。比如20,删除它不会破坏原来树的结构,最简单。如图所示。

(2)删除的是单孩子节点。比如90,删除它后需要将它的孩子节点与自己的父节点相连。情形比第一种复杂一些。

(3)删除的是有左右孩子的节点。比如根节点50
这里有一个问题就是删除它后,谁将作为根节点?利用二叉树的中序遍历,就是右节点的左子树的最左孩子。

3、代码
有了思路之后,下面就开始写代码来实现这些功能。
BSTreeNode.java
public class BSTreeNode {
public int data;
public BSTreeNode left;
public BSTreeNode right;
public BSTreeNode(int data) {
this.data = data;
}
}
BSTreeOperate.java
/**
* 二叉排序树的常见操作
*/
public class BSTreeOperate { // 树的根节点
public BSTreeNode root;
// 记录树的节点个数
public int size; /**
* 创建二叉排序树
*
* @param list
* @return
*/
public BSTreeNode create(int[] list) { for (int i = 0; i < list.length; i++) {
insert(list[i]);
}
return root;
} /**
* 插入一个值为data的节点
*
* @param data
*/
public void insert(int data) {
insert(new BSTreeNode(data));
} /**
* 插入一个节点
*
* @param bsTreeNode
*/
public void insert(BSTreeNode bsTreeNode) {
if (root == null) {
root = bsTreeNode;
size++;
return;
}
BSTreeNode current = root;
while (true) {
if (bsTreeNode.data <= current.data) {
// 如果插入节点的值小于当前节点的值,说明应该插入到当前节点左子树,而此时如果左子树为空,就直接设置当前节点的左子树为插入节点。
if (current.left == null) {
current.left = bsTreeNode;
size++;
return;
}
current = current.left;
} else {
// 如果插入节点的值大于当前节点的值,说明应该插入到当前节点右子树,而此时如果右子树为空,就直接设置当前节点的右子树为插入节点。
if (current.right == null) {
current.right = bsTreeNode;
size++;
return;
}
current = current.right;
}
}
} /**
* 中序遍历
*
* @param bsTreeNode
*/
public void LDR(BSTreeNode bsTreeNode) {
if (bsTreeNode != null) {
// 遍历左子树
LDR(bsTreeNode.left);
// 输出节点数据
System.out.print(bsTreeNode.data + " ");
// 遍历右子树
LDR(bsTreeNode.right);
}
} /**
* 查找节点
*/
public boolean search(BSTreeNode bsTreeNode, int key) {
// 遍历完没有找到,查找失败
if (bsTreeNode == null) {
return false;
}
// 要查找的元素为当前节点,查找成功
if (key == bsTreeNode.data) {
return true;
}
// 继续去当前节点的左子树中查找,否则去当前节点的右子树中查找
if (key < bsTreeNode.data) {
return search(bsTreeNode.left, key);
} else {
return search(bsTreeNode.right, key);
}
}
}
BSTreeOperateTest.java
public class BSTreeOperateTest {
public static void main(String[] args) {
BSTreeOperate bsTreeOperate = new BSTreeOperate();
int[] list = new int[]{50, 30, 70, 10, 40, 90, 80};
System.out.println("*********创建二叉排序树*********");
BSTreeNode bsTreeNode = bsTreeOperate.create(list);
System.out.println("中序遍历原始的数据:");
bsTreeOperate.LDR(bsTreeNode);
System.out.println("");
System.out.println("");
System.out.println("********查找节点*******");
System.out.println("元素20是否在树中:" + bsTreeOperate.search(bsTreeNode, 20));
System.out.println("");
System.out.println("********插入节点*******");
System.out.println("将元素20插入到树中");
bsTreeOperate.insert(20);
System.out.println("中序遍历:");
bsTreeOperate.LDR(bsTreeNode);
System.out.println("");
System.out.println("");
System.out.println("********查找节点*******");
System.out.println("元素20是否在树中:" + bsTreeOperate.search(bsTreeNode, 20));
System.out.println("");
}
}
运行结果:

欢迎转载,但请保留文章原始出处
本文地址:http://www.cnblogs.com/nnngu/p/8294714.html
算法08 五大查找之:二叉排序树(BSTree)的更多相关文章
- 算法8 五大查找之:二叉排序树(BSTree)
上一篇总结了索引查找,这一篇要总结的是二叉排序树,又称为二叉搜索树(BSTree) . 构造一棵二叉排序树的目的,其实并不是为了排序,而是为了提高查找和插入删除的效率. 什么是二叉排序树呢?二叉排序树 ...
- C++11写算法之二分查找
同样的,二分查找很好理解,不多做解释,要注意二分查找的list必须是排好序的. 这里实现了两种二分查找的算法,一种递归一种非递归,看看代码应该差不多是秒懂.想试验两种算法,改变一下findFunc函数 ...
- Atitit.软件中见算法 程序设计五大种类算法
Atitit.软件中见算法 程序设计五大种类算法 1. 算法的定义1 2. 算法的复杂度1 2.1. Algo cate2 3. 分治法2 4. 动态规划法2 5. 贪心算法3 6. 回溯法3 7. ...
- Java中的查找算法之顺序查找(Sequential Search)
Java中的查找算法之顺序查找(Sequential Search) 神话丿小王子的博客主页 a) 原理:顺序查找就是按顺序从头到尾依次往下查找,找到数据,则提前结束查找,找不到便一直查找下去,直到数 ...
- 1101: 零起点学算法08——简单的输入和计算(a+b)
1101: 零起点学算法08--简单的输入和计算(a+b) Time Limit: 1 Sec Memory Limit: 128 MB 64bit IO Format: %lldSubmitt ...
- 【算法】二分查找法&大O表示法
二分查找 基本概念 二分查找是一种算法,其输入是一个有序的元素列表.如果要查找的元素包含在列表中,二分查找返回其位置:否则返回null. 使用二分查找时,每次都排除一半的数字 对于包含n个元素的列表, ...
- javascript数据结构与算法---二叉树(查找最小值、最大值、给定值)
javascript数据结构与算法---二叉树(查找最小值.最大值.给定值) function Node(data,left,right) { this.data = data; this.left ...
- javascript数据结构与算法---检索算法(二分查找法、计算重复次数)
javascript数据结构与算法---检索算法(二分查找法.计算重复次数) /*只需要查找元素是否存在数组,可以先将数组排序,再使用二分查找法*/ function qSort(arr){ if ( ...
- javascript数据结构与算法---检索算法(顺序查找、最大最小值、自组织查询)
javascript数据结构与算法---检索算法(顺序查找.最大最小值.自组织查询) 一.顺序查找法 /* * 顺序查找法 * * 顺序查找法只要从列表的第一个元素开始循环,然后逐个与要查找的数据进行 ...
随机推荐
- Training: MySQL I (MySQL, Exploit, Training)
题目链接:http://www.wechall.net/challenge/training/mysql/auth_bypass1/index.php?highlight=christmas 的确是非 ...
- underscore.js 分析 第四天
查看underscore包含多少属性和方法 通过阅读JavaScript 获取对象的键的数组 var a = _; var arr = Object.keys(a); console.log(arr) ...
- Visual Studio设置字体及护眼背景色
打开vs 菜单栏选择: 工具 -> 选择 -> 环境 -> 字体和颜色,如图所示 字体可以如上选择,背景色选择项背景,点击自定义,如下设置即可.
- 【SpringCloud】第十一篇: 断路器监控(Hystrix Dashboard)
前言: 必需学会SpringBoot基础知识 简介: spring cloud 为开发人员提供了快速构建分布式系统的一些工具,包括配置管理.服务发现.断路器.路由.微代理.事件总线.全局锁.决策竞选. ...
- Linux 安装Zookeeper<准备>(使用Mac远程访问)
阅读本文需要安装JDK 一 Zookeeper简介 zookeeper是用java语言编写的一款为分布式应用所设计的协调服务 zookeeper是apacahe hadoop的子项目 使用zookee ...
- MySQL 中的数据类型介绍
1.MySQL 数据类型 MySQL中定义数据字段的类型对你数据库的优化是非常重要的. MySQL支持多种类型,大致可以分为三类:数值.日期/时间和字符串(字符)类型. 2.数值类型(12) 2.1. ...
- ES6的新特性(3)——变量的解构赋值
变量的解构赋值 数组的解构赋值 基本用法 ES6 允许按照一定模式,从数组和对象中提取值,对变量进行赋值,这被称为解构(Destructuring). let a = 1; let b = 2; le ...
- 欢迎来怼--第三十次Scrum会议
一.小组信息 队名:欢迎来怼 小组成员 队长:田继平 成员:李圆圆,葛美义,王伟东,姜珊,邵朔,阚博文 小组照片 二.开会信息 时间:2017/11/18 17:20~17:53,总计33min. 地 ...
- 前端获取URL和SESSON中的值
.CS中代码 public ActionResult Index(string viewname, bool partial = false) { //获取URL中的 foreach (var key ...
- Ubuntu中Google Chrome安装
转载自博客 1. 方法一 1.在ubuntu中启动终端 2.在终端中,输入以下命令: sudo wget http://www.linuxidc.com/files/repo/google-c ...