[NOIp2018]铺设道路 贪心
LG传送门
考场上写的\(O(nlogn)\)做法,具体思想是把深度从低到高排个序,开一个标记数组,每次加入的时候标记当前位置并判断:如果当前加入的位置两边都被标记过,则下次的贡献-1,若两边都没有被标记过,则贡献+1。预先把数组的0和n+1标记一下。
考场代码:(考场的两格缩进真的谜)
#include<cstdio>
#include<algorithm>
#define R register
#define I inline
using namespace std;
const int S=100010;
I int rd(){
R int f=0; R char c=getchar();
while(c<48||c>57) c=getchar();
while(c>47&&c<58) f=f*10+(c^48),c=getchar();
return f;
}
int b[S];
struct node{
int d,s;
int operator <(const node &a)const{return d==a.d?s<a.s:d<a.d;}
}f[S];
I int max(int x,int y){return x>y?x:y;}
int main(){
R int n=rd(),i,j,k=1,p,u,o=0;
for(i=1;i<=n;++i) f[i].d=rd(),p=max(p,f[i].d),f[i].s=i;
sort(f+1,f+1+n),b[0]=1,b[n+1]=1;
for(i=1,j=0;i<=n;j=f[i].d,++i){
o+=(f[i].d-j)*k;
while(f[i].d==f[i+1].d){
u=f[i].s,b[u]=1;
if(b[u+1]&&b[u-1]) --k;
if(!b[u+1]&&!b[u-1]) ++k;
++i;
}
u=f[i].s,b[u]=i;
if(b[u+1]&&b[u-1]) --k;
if(!b[u+1]&&!b[u-1]) ++k;
}
printf("%d",o);
return 0;
}
事实上这题可以\(O(n)\)贪心:从左往右扫,如果后一个比前一个大就计算贡献,事实证明这种贪心是正确的。
#include<cctype>
#include<cstring>
#include<algorithm>
#define R register
#define I inline
using namespace std;
const int S=100010;
char buf[S],*p1,*p2;
I char gc(){return p1==p2&&(p2=(p1=buf)+fread(buf,1,S,stdin),p1==p2)?EOF:*p1++;}
I int rd(){
R int f=0; R char c=gc();
while(c<48||c>57) c=gc();
while(c>47&&c<58) f=(f<<3)+(f<<1)+(c^48),c=gc();
return f;
}
int main(){
R int n=rd(),o=0,i,a=0,b=rd();
for(i=2;i<=n;++i){
if(b>a) o+=b-a;
a=b,b=rd();
}
if(b>a) o+=b-a;
printf("%d",o);
return 0;
}
[NOIp2018]铺设道路 贪心的更多相关文章
- luogu5019 [NOIp2018]铺设道路 (贪心)
和NOIp2013 积木大赛一模一样 我在堆一格的时候,我把它尽量地往右去延伸 于是如果对于一个i,a[i-1]<a[i],那i在之前一定只堆过a[i-1]那么多,所以要再堆a[i]-a[i-1 ...
- 题解【洛谷P5019】[NOIP2018]铺设道路
题目描述 春春是一名道路工程师,负责铺设一条长度为 \(n\) 的道路. 铺设道路的主要工作是填平下陷的地表.整段道路可以看作是 \(n\) 块首尾相连的区域,一开始,第 \(i\) 块区域下陷的深度 ...
- 【比赛】NOIP2018 铺设道路
原题,而且还是CCF自己的 考虑对于一段最长不上升序列,无论如何都至少有序列第一个数的贡献,可以知道,这个贡献是可以做到且最少的 然后对于序列最后一位,也就是最小的那一个数,可以和后面序列拼起来的就拼 ...
- noip 2018 day1 T1 铺设道路 贪心
Code: #include<cstdio> using namespace std; int main() { int last=0,ans=0; int n;scanf("% ...
- [NOIp2013提高组]积木大赛/[NOIp2018提高组]铺设道路
[NOIp2013提高组]积木大赛/[NOIp2018提高组]铺设道路 题目大意: 对于长度为\(n(n\le10^5)\)的非负数列\(A\),每次可以选取一个区间\(-1\).问将数列清零至少需要 ...
- @NOIP2018 - D1T1@ 铺设道路
目录 @题目描述@ @考场上的思路@ @比较正常的题解@ @题目描述@ 春春是一名道路工程师,负责铺设一条长度为 n 的道路. 铺设道路的主要工作是填平下陷的地表.整段道路可以看作是 n 块首尾相连的 ...
- 洛谷P5019 [NOIP2018 提高组] 铺设道路
题目描述 春春是一名道路工程师,负责铺设一条长度为 n 的道路. 铺设道路的主要工作是填平下陷的地表.整段道路可以看作是 n 块首尾相连的区域,一开始,第 i 块区域下陷的深度为 di. 春春每天可以 ...
- 洛谷 P5019 铺设道路
题目描述 春春是一名道路工程师,负责铺设一条长度为 \(n\) 的道路. 铺设道路的主要工作是填平下陷的地表.整段道路可以看作是 \(n\) 块首尾相连的区域,一开始,第 \(i\) 块区域下陷的深度 ...
- NOIP提高组2018试题解析 Day1 T1 铺设道路 P5019
题目描述 春春是一名道路工程师,负责铺设一条长度为 nn 的道路. 铺设道路的主要工作是填平下陷的地表.整段道路可以看作是 nn 块首尾相连的区域,一开始,第 ii 块区域下陷的深度为 d_idi ...
随机推荐
- BZOJ3224:普通平衡树(Splay)
Description 您需要写一种数据结构(可参考题目标题),来维护一些数,其中需要提供以下操作: 1. 插入x数 2. 删除x数(若有多个相同的数,因只删除一个) 3. 查询x数的排名(若有多个相 ...
- eclipse导出maven依赖的jar包
一.导出到默认目录 targed/dependency 1.从Maven项目中导出项目依赖的jar包:进入工程pom.xml 所在的目录下,执行如下命令: mvn dependency:copy-de ...
- POJ 3107 Godfather(树的重心)
嘟嘟嘟 题说的很明白,就是求树的重心. 我们首先dfs一遍维护每一个点的子树大小,然后再dfs一遍,对于一个点u,选择子树中size[v]最小的那个和n - size[u]比较,取最大作为删除u后的答 ...
- ethereumjs/ethereumjs-block-1-简介
https://github.com/ethereumjs/ethereumjs-block Encoding, decoding and validation of Ethereum's Block ...
- PAT——1075. 链表元素分类(25)
给定一个单链表,请编写程序将链表元素进行分类排列,使得所有负值元素都排在非负值元素的前面,而[0, K]区间内的元素都排在大于K的元素前面.但每一类内部元素的顺序是不能改变的.例如:给定链表为 18→ ...
- 如何弹出WiFi提示列表。
如果你的程序中用到了WiFi,想在没有有效WiFi的时候出现如图所示的提示该怎么做? 其实很简单, 只需要在Info.plist中添加如下Key/Value UIRequiresPersistentW ...
- (转)Linux内核基数树应用分析
Linux内核基数树应用分析 ——lvyilong316 基数树(Radix tree)可看做是以二进制位串为关键字的trie树,是一种多叉树结构,同时又类似多层索引表,每个中间节点包含指向多个节点的 ...
- TCL-事务
一.含义事务:一条或多条sql语句组成一个执行单位,一组sql语句要么都执行要么都不执行二.特点(ACID)A 原子性:一个事务是不可再分割的整体,要么都执行要么都不执行C 一致性:一个事务可以使数据 ...
- Java面向对象的三个特征
首先,Java面向对象的三大特征: 三大特征: ▪ 封装 ▪ 继承 ▪ 多态 首先面向对象的第一个特性 封装 : 封装:就是把客观事物封装成抽象的类,并且类可以把自己的数据和方法只让可信的类或者对象操 ...
- React简单实现双向数据绑定
import React, { Component } from 'react' import ReactDOM from 'react-dom' class App extends Componen ...