LG传送门

考场上写的\(O(nlogn)\)做法,具体思想是把深度从低到高排个序,开一个标记数组,每次加入的时候标记当前位置并判断:如果当前加入的位置两边都被标记过,则下次的贡献-1,若两边都没有被标记过,则贡献+1。预先把数组的0和n+1标记一下。

考场代码:(考场的两格缩进真的谜)

#include<cstdio>
#include<algorithm>
#define R register
#define I inline
using namespace std;
const int S=100010;
I int rd(){
R int f=0; R char c=getchar();
while(c<48||c>57) c=getchar();
while(c>47&&c<58) f=f*10+(c^48),c=getchar();
return f;
}
int b[S];
struct node{
int d,s;
int operator <(const node &a)const{return d==a.d?s<a.s:d<a.d;}
}f[S];
I int max(int x,int y){return x>y?x:y;}
int main(){
R int n=rd(),i,j,k=1,p,u,o=0;
for(i=1;i<=n;++i) f[i].d=rd(),p=max(p,f[i].d),f[i].s=i;
sort(f+1,f+1+n),b[0]=1,b[n+1]=1;
for(i=1,j=0;i<=n;j=f[i].d,++i){
o+=(f[i].d-j)*k;
while(f[i].d==f[i+1].d){
u=f[i].s,b[u]=1;
if(b[u+1]&&b[u-1]) --k;
if(!b[u+1]&&!b[u-1]) ++k;
++i;
}
u=f[i].s,b[u]=i;
if(b[u+1]&&b[u-1]) --k;
if(!b[u+1]&&!b[u-1]) ++k;
}
printf("%d",o);
return 0;
}

事实上这题可以\(O(n)\)贪心:从左往右扫,如果后一个比前一个大就计算贡献,事实证明这种贪心是正确的。

#include<cctype>
#include<cstring>
#include<algorithm>
#define R register
#define I inline
using namespace std;
const int S=100010; char buf[S],*p1,*p2;
I char gc(){return p1==p2&&(p2=(p1=buf)+fread(buf,1,S,stdin),p1==p2)?EOF:*p1++;}
I int rd(){
R int f=0; R char c=gc();
while(c<48||c>57) c=gc();
while(c>47&&c<58) f=(f<<3)+(f<<1)+(c^48),c=gc();
return f;
} int main(){
R int n=rd(),o=0,i,a=0,b=rd();
for(i=2;i<=n;++i){
if(b>a) o+=b-a;
a=b,b=rd();
}
if(b>a) o+=b-a;
printf("%d",o);
return 0;
}

[NOIp2018]铺设道路 贪心的更多相关文章

  1. luogu5019 [NOIp2018]铺设道路 (贪心)

    和NOIp2013 积木大赛一模一样 我在堆一格的时候,我把它尽量地往右去延伸 于是如果对于一个i,a[i-1]<a[i],那i在之前一定只堆过a[i-1]那么多,所以要再堆a[i]-a[i-1 ...

  2. 题解【洛谷P5019】[NOIP2018]铺设道路

    题目描述 春春是一名道路工程师,负责铺设一条长度为 \(n\) 的道路. 铺设道路的主要工作是填平下陷的地表.整段道路可以看作是 \(n\) 块首尾相连的区域,一开始,第 \(i\) 块区域下陷的深度 ...

  3. 【比赛】NOIP2018 铺设道路

    原题,而且还是CCF自己的 考虑对于一段最长不上升序列,无论如何都至少有序列第一个数的贡献,可以知道,这个贡献是可以做到且最少的 然后对于序列最后一位,也就是最小的那一个数,可以和后面序列拼起来的就拼 ...

  4. noip 2018 day1 T1 铺设道路 贪心

    Code: #include<cstdio> using namespace std; int main() { int last=0,ans=0; int n;scanf("% ...

  5. [NOIp2013提高组]积木大赛/[NOIp2018提高组]铺设道路

    [NOIp2013提高组]积木大赛/[NOIp2018提高组]铺设道路 题目大意: 对于长度为\(n(n\le10^5)\)的非负数列\(A\),每次可以选取一个区间\(-1\).问将数列清零至少需要 ...

  6. @NOIP2018 - D1T1@ 铺设道路

    目录 @题目描述@ @考场上的思路@ @比较正常的题解@ @题目描述@ 春春是一名道路工程师,负责铺设一条长度为 n 的道路. 铺设道路的主要工作是填平下陷的地表.整段道路可以看作是 n 块首尾相连的 ...

  7. 洛谷P5019 [NOIP2018 提高组] 铺设道路

    题目描述 春春是一名道路工程师,负责铺设一条长度为 n 的道路. 铺设道路的主要工作是填平下陷的地表.整段道路可以看作是 n 块首尾相连的区域,一开始,第 i 块区域下陷的深度为 di. 春春每天可以 ...

  8. 洛谷 P5019 铺设道路

    题目描述 春春是一名道路工程师,负责铺设一条长度为 \(n\) 的道路. 铺设道路的主要工作是填平下陷的地表.整段道路可以看作是 \(n\) 块首尾相连的区域,一开始,第 \(i\) 块区域下陷的深度 ...

  9. NOIP提高组2018试题解析 Day1 T1 铺设道路 P5019

    题目描述 春春是一名道路工程师,负责铺设一条长度为 nn 的道路. 铺设道路的主要工作是填平下陷的地表.整段道路可以看作是 nn 块首尾相连的区域,一开始,第 ii 块区域下陷的深度为 d_idi​  ...

随机推荐

  1. BZOJ3224:普通平衡树(Splay)

    Description 您需要写一种数据结构(可参考题目标题),来维护一些数,其中需要提供以下操作: 1. 插入x数 2. 删除x数(若有多个相同的数,因只删除一个) 3. 查询x数的排名(若有多个相 ...

  2. eclipse导出maven依赖的jar包

    一.导出到默认目录 targed/dependency 1.从Maven项目中导出项目依赖的jar包:进入工程pom.xml 所在的目录下,执行如下命令: mvn dependency:copy-de ...

  3. POJ 3107 Godfather(树的重心)

    嘟嘟嘟 题说的很明白,就是求树的重心. 我们首先dfs一遍维护每一个点的子树大小,然后再dfs一遍,对于一个点u,选择子树中size[v]最小的那个和n - size[u]比较,取最大作为删除u后的答 ...

  4. ethereumjs/ethereumjs-block-1-简介

    https://github.com/ethereumjs/ethereumjs-block Encoding, decoding and validation of Ethereum's Block ...

  5. PAT——1075. 链表元素分类(25)

    给定一个单链表,请编写程序将链表元素进行分类排列,使得所有负值元素都排在非负值元素的前面,而[0, K]区间内的元素都排在大于K的元素前面.但每一类内部元素的顺序是不能改变的.例如:给定链表为 18→ ...

  6. 如何弹出WiFi提示列表。

    如果你的程序中用到了WiFi,想在没有有效WiFi的时候出现如图所示的提示该怎么做? 其实很简单, 只需要在Info.plist中添加如下Key/Value UIRequiresPersistentW ...

  7. (转)Linux内核基数树应用分析

    Linux内核基数树应用分析 ——lvyilong316 基数树(Radix tree)可看做是以二进制位串为关键字的trie树,是一种多叉树结构,同时又类似多层索引表,每个中间节点包含指向多个节点的 ...

  8. TCL-事务

    一.含义事务:一条或多条sql语句组成一个执行单位,一组sql语句要么都执行要么都不执行二.特点(ACID)A 原子性:一个事务是不可再分割的整体,要么都执行要么都不执行C 一致性:一个事务可以使数据 ...

  9. Java面向对象的三个特征

    首先,Java面向对象的三大特征: 三大特征: ▪ 封装 ▪ 继承 ▪ 多态 首先面向对象的第一个特性 封装 : 封装:就是把客观事物封装成抽象的类,并且类可以把自己的数据和方法只让可信的类或者对象操 ...

  10. React简单实现双向数据绑定

    import React, { Component } from 'react' import ReactDOM from 'react-dom' class App extends Componen ...