LG传送门

考场上写的\(O(nlogn)\)做法,具体思想是把深度从低到高排个序,开一个标记数组,每次加入的时候标记当前位置并判断:如果当前加入的位置两边都被标记过,则下次的贡献-1,若两边都没有被标记过,则贡献+1。预先把数组的0和n+1标记一下。

考场代码:(考场的两格缩进真的谜)

#include<cstdio>
#include<algorithm>
#define R register
#define I inline
using namespace std;
const int S=100010;
I int rd(){
R int f=0; R char c=getchar();
while(c<48||c>57) c=getchar();
while(c>47&&c<58) f=f*10+(c^48),c=getchar();
return f;
}
int b[S];
struct node{
int d,s;
int operator <(const node &a)const{return d==a.d?s<a.s:d<a.d;}
}f[S];
I int max(int x,int y){return x>y?x:y;}
int main(){
R int n=rd(),i,j,k=1,p,u,o=0;
for(i=1;i<=n;++i) f[i].d=rd(),p=max(p,f[i].d),f[i].s=i;
sort(f+1,f+1+n),b[0]=1,b[n+1]=1;
for(i=1,j=0;i<=n;j=f[i].d,++i){
o+=(f[i].d-j)*k;
while(f[i].d==f[i+1].d){
u=f[i].s,b[u]=1;
if(b[u+1]&&b[u-1]) --k;
if(!b[u+1]&&!b[u-1]) ++k;
++i;
}
u=f[i].s,b[u]=i;
if(b[u+1]&&b[u-1]) --k;
if(!b[u+1]&&!b[u-1]) ++k;
}
printf("%d",o);
return 0;
}

事实上这题可以\(O(n)\)贪心:从左往右扫,如果后一个比前一个大就计算贡献,事实证明这种贪心是正确的。

#include<cctype>
#include<cstring>
#include<algorithm>
#define R register
#define I inline
using namespace std;
const int S=100010; char buf[S],*p1,*p2;
I char gc(){return p1==p2&&(p2=(p1=buf)+fread(buf,1,S,stdin),p1==p2)?EOF:*p1++;}
I int rd(){
R int f=0; R char c=gc();
while(c<48||c>57) c=gc();
while(c>47&&c<58) f=(f<<3)+(f<<1)+(c^48),c=gc();
return f;
} int main(){
R int n=rd(),o=0,i,a=0,b=rd();
for(i=2;i<=n;++i){
if(b>a) o+=b-a;
a=b,b=rd();
}
if(b>a) o+=b-a;
printf("%d",o);
return 0;
}

[NOIp2018]铺设道路 贪心的更多相关文章

  1. luogu5019 [NOIp2018]铺设道路 (贪心)

    和NOIp2013 积木大赛一模一样 我在堆一格的时候,我把它尽量地往右去延伸 于是如果对于一个i,a[i-1]<a[i],那i在之前一定只堆过a[i-1]那么多,所以要再堆a[i]-a[i-1 ...

  2. 题解【洛谷P5019】[NOIP2018]铺设道路

    题目描述 春春是一名道路工程师,负责铺设一条长度为 \(n\) 的道路. 铺设道路的主要工作是填平下陷的地表.整段道路可以看作是 \(n\) 块首尾相连的区域,一开始,第 \(i\) 块区域下陷的深度 ...

  3. 【比赛】NOIP2018 铺设道路

    原题,而且还是CCF自己的 考虑对于一段最长不上升序列,无论如何都至少有序列第一个数的贡献,可以知道,这个贡献是可以做到且最少的 然后对于序列最后一位,也就是最小的那一个数,可以和后面序列拼起来的就拼 ...

  4. noip 2018 day1 T1 铺设道路 贪心

    Code: #include<cstdio> using namespace std; int main() { int last=0,ans=0; int n;scanf("% ...

  5. [NOIp2013提高组]积木大赛/[NOIp2018提高组]铺设道路

    [NOIp2013提高组]积木大赛/[NOIp2018提高组]铺设道路 题目大意: 对于长度为\(n(n\le10^5)\)的非负数列\(A\),每次可以选取一个区间\(-1\).问将数列清零至少需要 ...

  6. @NOIP2018 - D1T1@ 铺设道路

    目录 @题目描述@ @考场上的思路@ @比较正常的题解@ @题目描述@ 春春是一名道路工程师,负责铺设一条长度为 n 的道路. 铺设道路的主要工作是填平下陷的地表.整段道路可以看作是 n 块首尾相连的 ...

  7. 洛谷P5019 [NOIP2018 提高组] 铺设道路

    题目描述 春春是一名道路工程师,负责铺设一条长度为 n 的道路. 铺设道路的主要工作是填平下陷的地表.整段道路可以看作是 n 块首尾相连的区域,一开始,第 i 块区域下陷的深度为 di. 春春每天可以 ...

  8. 洛谷 P5019 铺设道路

    题目描述 春春是一名道路工程师,负责铺设一条长度为 \(n\) 的道路. 铺设道路的主要工作是填平下陷的地表.整段道路可以看作是 \(n\) 块首尾相连的区域,一开始,第 \(i\) 块区域下陷的深度 ...

  9. NOIP提高组2018试题解析 Day1 T1 铺设道路 P5019

    题目描述 春春是一名道路工程师,负责铺设一条长度为 nn 的道路. 铺设道路的主要工作是填平下陷的地表.整段道路可以看作是 nn 块首尾相连的区域,一开始,第 ii 块区域下陷的深度为 d_idi​  ...

随机推荐

  1. 「BZOJ3226」[Sdoi2008]校门外的区间

    题目 首先是开闭区间的处理,我们把\(1.5\)这种数加进来,用\([1.5,6]\)来表示\((2,6]\) 根据离散数学的基本知识,尝试把五个操作转化成人话 把\([x,y]\)变成\(1\) 把 ...

  2. xss练习平台及writeup

    今天玩了一天的xss. 分享几个xss game https://xss.haozi.me/#/0x00 http://47.94.13.75/test/  writeup:http://www.cn ...

  3. [19/04/24-星期三] GOF23_创建型模式(建造者模式、原型模式)

    一.建造者模式 本质:分离了对象子组件的单独构造(由Builder负责)和装配的分离(由Director负责),从而可以构建出复杂的对象,这个模式适用于:某个对象的构建过程十分复杂 好处:由于构建和装 ...

  4. 【node】安装

    参考链接: http://www.runoob.com/nodejs/nodejs-install-setup.html http://blog.csdn.net/u010255310/article ...

  5. 2、Android-UI(常用控件)

    2.1.如何编写程序页面 Android中有许多编写程序的方式可供选择 Android Studio和Eclipse中都提供了响应的可视化编辑器 可以直接再进行拖动创建布局 推荐使用手动编写方式进行开 ...

  6. php数组的定义和数组的赋值

    1.php执行过程 加载页面  语法检测 执行脚本 $arr=array(1,2,3); 索引数组 $arr=array("name"=>"user1", ...

  7. 修改微软RDP远程桌面端口

    远程桌面服务所使用的通信协议是Microsoft定义RDP(Remote Desktop Protocol)协议,RDP协议的TCP通信端口号是3389. 有时候为了安全起见,或者其他的需要,我们常需 ...

  8. Git--查看,删除,添加远程分支

    1. 查看远程分支: $ git branch -a 2. 删除远程分支: $ git push origin --delete <branch name> 或者 git push --d ...

  9. uboot 移植 要点

    1.第一 首先要  学会 shell 语法   比如 变量的 概念 变量的使用 ,if 语法  ,以及简单 IF 语法(与 或预算),以及  while for 循环 等等语法,才能看得懂 uboot ...

  10. 如何使用jquery.qrcode.js插件生成二维码

    1.首先需要准备 jquery.qrcode.js 和 jquery.js github地址:https://github.com/lrsjng/jquery-qrcode 官方文档地址:http:/ ...