[NOIp2018]铺设道路 贪心
LG传送门
考场上写的\(O(nlogn)\)做法,具体思想是把深度从低到高排个序,开一个标记数组,每次加入的时候标记当前位置并判断:如果当前加入的位置两边都被标记过,则下次的贡献-1,若两边都没有被标记过,则贡献+1。预先把数组的0和n+1标记一下。
考场代码:(考场的两格缩进真的谜)
#include<cstdio>
#include<algorithm>
#define R register
#define I inline
using namespace std;
const int S=100010;
I int rd(){
R int f=0; R char c=getchar();
while(c<48||c>57) c=getchar();
while(c>47&&c<58) f=f*10+(c^48),c=getchar();
return f;
}
int b[S];
struct node{
int d,s;
int operator <(const node &a)const{return d==a.d?s<a.s:d<a.d;}
}f[S];
I int max(int x,int y){return x>y?x:y;}
int main(){
R int n=rd(),i,j,k=1,p,u,o=0;
for(i=1;i<=n;++i) f[i].d=rd(),p=max(p,f[i].d),f[i].s=i;
sort(f+1,f+1+n),b[0]=1,b[n+1]=1;
for(i=1,j=0;i<=n;j=f[i].d,++i){
o+=(f[i].d-j)*k;
while(f[i].d==f[i+1].d){
u=f[i].s,b[u]=1;
if(b[u+1]&&b[u-1]) --k;
if(!b[u+1]&&!b[u-1]) ++k;
++i;
}
u=f[i].s,b[u]=i;
if(b[u+1]&&b[u-1]) --k;
if(!b[u+1]&&!b[u-1]) ++k;
}
printf("%d",o);
return 0;
}
事实上这题可以\(O(n)\)贪心:从左往右扫,如果后一个比前一个大就计算贡献,事实证明这种贪心是正确的。
#include<cctype>
#include<cstring>
#include<algorithm>
#define R register
#define I inline
using namespace std;
const int S=100010;
char buf[S],*p1,*p2;
I char gc(){return p1==p2&&(p2=(p1=buf)+fread(buf,1,S,stdin),p1==p2)?EOF:*p1++;}
I int rd(){
R int f=0; R char c=gc();
while(c<48||c>57) c=gc();
while(c>47&&c<58) f=(f<<3)+(f<<1)+(c^48),c=gc();
return f;
}
int main(){
R int n=rd(),o=0,i,a=0,b=rd();
for(i=2;i<=n;++i){
if(b>a) o+=b-a;
a=b,b=rd();
}
if(b>a) o+=b-a;
printf("%d",o);
return 0;
}
[NOIp2018]铺设道路 贪心的更多相关文章
- luogu5019 [NOIp2018]铺设道路 (贪心)
和NOIp2013 积木大赛一模一样 我在堆一格的时候,我把它尽量地往右去延伸 于是如果对于一个i,a[i-1]<a[i],那i在之前一定只堆过a[i-1]那么多,所以要再堆a[i]-a[i-1 ...
- 题解【洛谷P5019】[NOIP2018]铺设道路
题目描述 春春是一名道路工程师,负责铺设一条长度为 \(n\) 的道路. 铺设道路的主要工作是填平下陷的地表.整段道路可以看作是 \(n\) 块首尾相连的区域,一开始,第 \(i\) 块区域下陷的深度 ...
- 【比赛】NOIP2018 铺设道路
原题,而且还是CCF自己的 考虑对于一段最长不上升序列,无论如何都至少有序列第一个数的贡献,可以知道,这个贡献是可以做到且最少的 然后对于序列最后一位,也就是最小的那一个数,可以和后面序列拼起来的就拼 ...
- noip 2018 day1 T1 铺设道路 贪心
Code: #include<cstdio> using namespace std; int main() { int last=0,ans=0; int n;scanf("% ...
- [NOIp2013提高组]积木大赛/[NOIp2018提高组]铺设道路
[NOIp2013提高组]积木大赛/[NOIp2018提高组]铺设道路 题目大意: 对于长度为\(n(n\le10^5)\)的非负数列\(A\),每次可以选取一个区间\(-1\).问将数列清零至少需要 ...
- @NOIP2018 - D1T1@ 铺设道路
目录 @题目描述@ @考场上的思路@ @比较正常的题解@ @题目描述@ 春春是一名道路工程师,负责铺设一条长度为 n 的道路. 铺设道路的主要工作是填平下陷的地表.整段道路可以看作是 n 块首尾相连的 ...
- 洛谷P5019 [NOIP2018 提高组] 铺设道路
题目描述 春春是一名道路工程师,负责铺设一条长度为 n 的道路. 铺设道路的主要工作是填平下陷的地表.整段道路可以看作是 n 块首尾相连的区域,一开始,第 i 块区域下陷的深度为 di. 春春每天可以 ...
- 洛谷 P5019 铺设道路
题目描述 春春是一名道路工程师,负责铺设一条长度为 \(n\) 的道路. 铺设道路的主要工作是填平下陷的地表.整段道路可以看作是 \(n\) 块首尾相连的区域,一开始,第 \(i\) 块区域下陷的深度 ...
- NOIP提高组2018试题解析 Day1 T1 铺设道路 P5019
题目描述 春春是一名道路工程师,负责铺设一条长度为 nn 的道路. 铺设道路的主要工作是填平下陷的地表.整段道路可以看作是 nn 块首尾相连的区域,一开始,第 ii 块区域下陷的深度为 d_idi ...
随机推荐
- 协议森林03 IP接力赛 (IP, ARP, RIP和BGP协议)
网络层(network layer)是实现互联网的最重要的一层.正是在网络层面上,各个局域网根据IP协议相互连接,最终构成覆盖全球的Internet.更高层的协议,无论是TCP还是UDP,必须通过网络 ...
- ValueError: Invalid leaf XXX
Bug:ValueError: Invalid leaf XXX 无效的搜索条件——检查search函数中的domain表达式格式!是否少了括号! search(['user_id', '=', us ...
- Spring(二)之入门示例
任何编程技术,特别是入门示例,通常都是Hello World,在这里我也遵循这个业界公认的原则. 这里我使用的maven项目,大家如果想要演示,建议使用Eclipse(含maven插件)或Idea(含 ...
- 简单说明一下JS中的函数声明存在的“先使用,后定义”
首先看一段JS代码,其中使用了两种方式声明了两个函数,分别在不同的地方调用两个函数: <script> 'use strict'; // 输出hello函数 console.log(hel ...
- 【luogu P3959 宝藏】 题解
题目链接:https://www.luogu.org/problemnew/show/P3959 我只是心血来潮想学SA(考场上骗分总行吧). 这个题可以状压DP.爆搜+剪枝.有意思的还是随机化搜索( ...
- 关于JavaScript 常见的面试题
关于JavaScript常见的面试题总结 一.JavaScript基本数据类型 null:空.无.表示不存在,当为对象的属性赋值为null,表示删除该属性 undefined:未定义.当声明变量却没有 ...
- LINUX下安装pcre出现WARNING: 'aclocal-1.15' is missing on your system错误的解决办法
1.下载安装包 wget https://ftp.gnu.org/gnu/automake/automake-1.15.tar.gz 2.解压 tar -xzvf automake-1.15.tar. ...
- mina 通讯框架
Apache Mina Server 是一个网络通信应用框架,也就是说,它主要是对基于TCP/IP.UDP/IP协议栈的通信框架(当然,也可以提供JAVA 对象的序列化服务.虚拟机管道通信服务等),M ...
- Navicat Premium 12 激活
链接:https://pan.baidu.com/s/1R4WB2JjKd0UYnN00CpUPSA 提取码:e3wy (破解工具及软件安装包) 破解流程:https://www.jianshu.co ...
- 混乱的 Java 日志体系
混乱的 Java 日志体系 2016/09/10 | 分类: 基础技术 | 0 条评论 | 标签: LOG 分享到: 原文出处: xirong 一.困扰的疑惑 目前的日志框架有 jdk 自带的 log ...