RGB camera

Bring up the OpenNI driver:

roslaunch openni_launch openni.launch

Now follow the standard monocular camera calibration instructions. Use the following command (substituting the correct dimensions of your checkerboard):

rosrun camera_calibration cameracalibrator.py image:=/camera/rgb/image_raw camera:=/camera/rgb --size 5x4 --square 0.0245

Don't forget to Commit your successful calibration.

IR (depth) camera

The Kinect detects depth by using an IR camera and IR speckle projector as a pseudo-stereo pair. We will calibrate the "depth" camera by detecting checkerboards in the IR image, just as we calibrated the RGB camera.

The speckle pattern makes it impossible to detect the checkerboard corners accurately in the IR image. The simplest solution is to cover the projector (lone opening on the far left) with one or two Post-it notes, mostly diffusing the speckles. An ideal solution is to block the projector completely and provide a separate IR light source. Good illumination sources include sunlight, halogen lamps, or incandescent lamps.

IR with speckle pattern

IR with projector covered by Post-it note

As before, follow the monocular camera calibration instructions:

rosrun camera_calibration cameracalibrator.py image:=/camera/ir/image_raw camera:=/camera/ir --size 5x4 --square 0.0245

The Kinect camera driver cannot stream both IR and RGB images. It will decide which of the two to stream based on the amount of subscribers, so kill nodes that subscribe to RGB images before doing the IR calibration.

Don't forget to Commit your successful calibration.

Where are the intrinsics saved?

When you click Commit, cameracalibrator.py sends the new calibration to the camera driver as a service call. The driver immediately begins publishing the updated calibration on its camera_info topic.

openni_camera uses camera_info_manager to manage calibration parameters. By default, it saves intrinsics to $HOME/.ros/camera_info/NAME.yaml and identifies them by the device serial number:

$ ls ~/.ros/camera_info/
depth_B00362708888047B.yaml rgb_B00362708888047B.yaml

Whenever you bring up the OpenNI driver, it will look for a previously saved calibration. If you want to share the intrinsics among multiple users, move them somewhere public (e.g. /public/path/) and use a launch file which configures the camera info URLs:

<launch>

 <!-- Include official launch file and specify camera_info urls -->
<include file="$(find openni_launch)/launch/openni.launch">
<!-- provide arguments to that launch file -->
<arg name="rgb_camera_info_url"
value="file:///public/path/rgb_B00362708888047B.yaml" />
<arg name="depth_camera_info_url"
value="file:///public/path/depth_B00362708888047B.yaml" />
</include> </launch>
 

Wiki: openni_launch/Tutorials/IntrinsicCalibration (last edited 2015-02-06 01:36:34 by AlexanderReimann)

http://wiki.ros.org/openni_launch/Tutorials/IntrinsicCalibration

使用ls ~/.ros/camera_info/之后,发现有7个.yaml后缀文件。使用cat ~/.ros/camera_info/1.yaml

image_width:
image_height:
camera_name: head_camera
camera_matrix:
rows:
cols:
data: [370.515976248363, , 313.8790868840471, , 372.6830969227434, 231.7153990263267, , , ]
distortion_model: plumb_bob
distortion_coefficients:
rows:
cols:
data: [-0.3004104519610615, 0.07652258370676726, -0.001477826771302646, -0.001199374872901745, ]
rectification_matrix:
rows:
cols:
data: [, , , , , , , , ]
projection_matrix:
rows:
cols:
data: [270.0549621582031, , 307.5854707490471, , , 317.0104064941406, 226.6749221178361, , , , , ]xiaoqiang@xiaoqiang-desktop:~$

2.yaml

image_width:
image_height:
camera_name: head_camera
camera_matrix:
rows:
cols:
data: [366.8006737481114, , 313.2319307503966, , 369.4691705536239, 225.8932701116596, , , ]
distortion_model: plumb_bob
distortion_coefficients:
rows:
cols:
data: [-0.2955066415987022, 0.07398741879692314, 0.001109057089446478, 0.0005550013886223383, ]
rectification_matrix:
rows:
cols:
data: [, , , , , , , , ]
projection_matrix:
rows:
cols:
data: [267.2522277832031, , 310.626720252556, , , 314.1973266601562, 220.8795998314854, , , , , ]xiaoqiang@xiaoqiang-desktop:~$

3.yaml

image_width:
image_height:
camera_name: head_camera
camera_matrix:
rows:
cols:
data: [367.7203842386191, , 312.1633776999364, , 369.8504643810227, 222.327969033836, , , ]
distortion_model: plumb_bob
distortion_coefficients:
rows:
cols:
data: [-0.3028043701396974, 0.08016316913146398, 0.001972259854054233, -0.0005855105383069578, ]
rectification_matrix:
rows:
cols:
data: [, , , , , , , , ]
projection_matrix:
rows:
cols:
data: [271.3121643066406, , 309.4569959074397, , , 313.3587341308594, 216.6703090559513, , , , , ]xiaoqiang@xiaoqiang-desktop:~$

4.yaml

image_width:
image_height:
camera_name: head_camera
camera_matrix:
rows:
cols:
data: [374.4079261743749, , 312.6902058006406, , 377.1063870868036, 231.8591658323552, , , ]
distortion_model: plumb_bob
distortion_coefficients:
rows:
cols:
data: [-0.3010382975004438, 0.07439561116406565, -0.001492430415890119, -0.0003780448972454258, ]
rectification_matrix:
rows:
cols:
data: [, , , , , , , , ]
projection_matrix:
rows:
cols:
data: [271.7996520996094, , 307.0881469125889, , , 321.7455749511719, 226.9183813513646, , , , , ]xiaoqiang@xiaoqiang-desktop:~$

5.yaml

image_width:
image_height:
camera_name: head_camera
camera_matrix:
rows:
cols:
data: [373.5111594774043, , 315.8084189513565, , 375.5234360862851, 229.6133929271384, , , ]
distortion_model: plumb_bob
distortion_coefficients:
rows:
cols:
data: [-0.2970245237058798, 0.07110293616491861, -0.0001459348712873391, -0.0009524327516462756, ]
rectification_matrix:
rows:
cols:
data: [, , , , , , , , ]
projection_matrix:
rows:
cols:
data: [257.2185668945312, , 313.4603221630314, , , 259.698974609375, 229.0707409084716, , , , , ]xiaoqiang@xiaoqiang-desktop:~$

6.yaml

image_width:
image_height:
camera_name: head_camera
camera_matrix:
rows:
cols:
data: [371.5469859488027, , 313.7857920360233, , 374.1714701553096, 230.9875296271416, , , ]
distortion_model: plumb_bob
distortion_coefficients:
rows:
cols:
data: [-0.3041189203607426, 0.07966724101404286, -0.001437047423319973, -0.0007192846641734516, ]
rectification_matrix:
rows:
cols:
data: [, , , , , , , , ]
projection_matrix:
rows:
cols:
data: [262.8392028808594, , 312.3786083245795, , , 265.9633483886719, 227.7569378555927, , , , , ]xiaoqiang@xiaoqiang-desktop:~$

7.yaml

image_width:
image_height:
camera_name: head_camera
camera_matrix:
rows:
cols:
data: [371.5334862939256, , 315.9415386864103, , 374.2254744680155, 230.2973984145617, , , ]
distortion_model: plumb_bob
distortion_coefficients:
rows:
cols:
data: [-0.3008205280473007, 0.07564784106509534, -0.0009834589984554513, -0.001248593384655783, ]
rectification_matrix:
rows:
cols:
data: [, , , , , , , , ]
projection_matrix:
rows:
cols:
data: [259.6164855957031, , 313.3351599445923, , , 262.554443359375, 227.852100494405, , , , , ]xiaoqiang@xiaoqiang-desktop:~$

相机矩阵(Camera Matrix):https://blog.csdn.net/zb1165048017/article/details/71104241

ros kinect calibration的更多相关文章

  1. 关于ros将opencv版本固定“写死”的一些想法

    今天主要工作是将ros和zed结合起来,但是发现自己安装了opencv3.1,ros indigo安装的是opencv2.4.8,这就麻烦了,zed支持的是opencv3.1.一开始使用slam2时, ...

  2. ROS indigo下Kinect v1的驱动安装与调试

    ROS indigo下Kinect v1的驱动安装与调试 本文简要叙述了在ROS indigo版本下Kinect v1的驱动安装与调试过程. 1. 实验环境 (1)硬件:  台式机和Kinect v1 ...

  3. kinect在ros上的初步测试---17

    摘要: 原创博客:转载请表明出处:http://www.cnblogs.com/zxouxuewei/ 1.在使用本贴前必须先按照我的上一个博文正确在ubuntu上安装kinect驱动:http:// ...

  4. ubuntu14.04 and ros indigo install kinect driver--16

    摘要: 原创博客:转载请表明出处:http://www.cnblogs.com/zxouxuewei/ 今日多次测设ros indigo install kinect driver ,提示各种失败,然 ...

  5. ubuntu14.04下 Kinect V2+Ros接口安装

    1. 首先git下载代码,放到主文件夹下面 git clone https://github.com/OpenKinect/libfreenect2.git 2. 然后安装依赖项如下,最好事先编译安装 ...

  6. ROS与深度相机入门教程-在ROS使用kinect v1摄像头

    ROS与深度相机入门教程-在ROS使用kinect v1摄像头 说明: 介绍在ros安装和使用kinect v1摄像头 介绍freenect包 安装驱动 deb安装 $ sudo apt-get in ...

  7. ORB-SLAM2实现(kinect V1/ROS)

    实验室电脑环境ubuntu14.04和ROS indigo已经装好. 1. 构建工作空间[非常重要的一步] mkdir -p ~/catkin_ws/src cd ~/catkin_ws/ catki ...

  8. Kinect for Xbox one(v2) + Ubuntu 14.04 +ROS 安装

    相比于kinect for xbox 360(v1)通过结构光来获取深度,Kinect for Xbox one(v2) 采用time flight技术,极大改善了深度图像的性能. kinect fo ...

  9. ROS学习(一)Ros 中使用kinect

    上的安装说明如下: 官网上明确写了如果安装windows kinect还需要安装一个驱动,但是有些ROS的书上并没有这么做,只提到了使用如下两步进行安装即可使用: sudo apt-get insta ...

随机推荐

  1. ASP.NET MVC基础入门.

    一:ASP.NET MVC 简介 1:asp.net mvc 是一种构建web应用程序的框架,他将一般的MVC(Model--View--Controller)模式应用于asp.net框架. 2:as ...

  2. CF gym101933 K King's Colors——二项式反演

    题目:http://codeforces.com/gym/101933/problem/K 每个点只要和父亲不同色就行.所以 “至多 i 种颜色” 的方案数就是 i * ( i-1 )n-1 . #i ...

  3. 洛谷2473(SCOI2008)奖励关

    题目:https://www.luogu.org/problemnew/show/P2473 因为可不可选此物与之前选过什么物品有关,所以状态可以记录成前面已经选过什么物品. 因为选不选此物与它带来的 ...

  4. [C++ Primer] 第6章: 函数

    参数传递 const形参和实参: 顶层const作用于对象本身, 和其他初始化过程一样, 当用实参初始化形参时会忽略掉顶层const, 换句话说, 形参顶层const被忽略掉了, 当形参有顶层cons ...

  5. wheezy下安装emacs24

    wget -q -O - http://emacs.naquadah.org/key.gpg | sudo apt-key add - vim /etc/apt/sources.list 添加 deb ...

  6. java课程设计-坦克大战

    团队课程设计博客链接 个人负责模块 枚举类.工具类.子弹类.图片素材的查找,地图制作 Git管理 包名类名的命名 详细说明 枚举类 如 单人和双人模式 工具类 将每个图片的路径使用字符串保存,便于调用 ...

  7. 改成maven工程

    configure->convert to Maven Project

  8. S 联系人新增及更新

    一.联系人新增 [Public] ConnectString=host="siebel://10.10.1.139:2321/SBA_82/SMObjMgr_chs ConnectUserN ...

  9. linux shell脚本编程笔记(五): 重定向

    I/O重定向 简述: 默认情况下始终有3个"文件"处于打开状态, stdin (键盘), stdout (屏幕), and stderr (错误消息输出到屏幕上). 这3个文件和其 ...

  10. unix时间戳与时间

    [root@pserver ~]# date -d "@1381371010" Thu Oct :: CST [root@pserver ~]# date --date=" ...