Educational Codeforces Round 18 C. Divide by Three DP
A positive integer number n is written on a blackboard. It consists of not more than 105 digits. You have to transform it into a beautiful number by erasing some of the digits, and you want to erase as few digits as possible.
The number is called beautiful if it consists of at least one digit, doesn't have leading zeroes and is a multiple of 3. For example, 0, 99, 10110 are beautiful numbers, and 00, 03, 122 are not.
Write a program which for the given n will find a beautiful number such that n can be transformed into this number by erasing as few digits as possible. You can erase an arbitraty set of digits. For example, they don't have to go one after another in the number n.
If it's impossible to obtain a beautiful number, print -1. If there are multiple answers, print any of them.
The first line of input contains n — a positive integer number without leading zeroes (1 ≤ n < 10100000).
Print one number — any beautiful number obtained by erasing as few as possible digits. If there is no answer, print - 1.
1033
33
In the first example it is enough to erase only the first digit to obtain a multiple of 3. But if we erase the first digit, then we obtain a number with a leading zero. So the minimum number of digits to be erased is two.
题意:
给你一个01串,问你最少删除多少个字符,使得余下的串10进制下%3=0,不得有前导0
题解:
设定dp[i][j][0/1/2]表示前i个字符中,组成%3=j的串需要的最少删除次数;
同时0表示还未填数,
1表示有一个前导0,
2表示开头填了一个非0数
需要记录路径pre
#include<bits/stdc++.h>
using namespace std;
#pragma comment(linker, "/STACK:102400000,102400000")
#define ls i<<1
#define rs ls | 1
#define mid ((ll+rr)>>1)
#define pii pair<int,int>
#define MP make_pair
typedef long long LL;
const long long INF = 1e18+1LL;
const double Pi = acos(-1.0);
const int N = 1e5+, M = 1e3+, mod = 1e9+, inf = 2e9; int dp[N][][],pre[N][][];//前i个数mod3 = j最少需要删除的字母个数 是否有前导0
char s[N];
int n,a[N],ans[N];
int main() {
scanf("%s",s+);
int n = strlen(s+);
for(int i = ; i <= n; ++i) a[i] = s[i] - '';
for(int i = ; i <= n; ++i) {
for(int j = ; j < ; ++j) dp[i][j][] = inf,dp[i][j][] = inf, dp[i][j][] = inf;
}
dp[][][] = ;
for(int i = ; i < n; ++i) {
for(int j = ; j < ; ++j) {
if(dp[i][j][] < dp[i+][(j+a[i+])%][(a[i+])==?:]) {
dp[i+][(j+a[i+])%][(a[i+])==?:] = dp[i][j][];
pre[i+][(j+a[i+])%][(a[i+])==?:] = ;
}
if(dp[i][j][]+ < dp[i+][(j+a[i+])%][(a[i+])==?:]) {
dp[i+][(j+a[i+])%][(a[i+])==?:] = dp[i][j][]+;
pre[i+][(j+a[i+])%][(a[i+])==?:] = ;
}
if(dp[i][j][] < dp[i+][(j+a[i+])%][]) {
dp[i+][(j+a[i+])%][] = dp[i][j][];
pre[i+][(j+a[i+])%][] = ;
} if(dp[i][j][]+ < dp[i+][j][]) {
dp[i+][j][] = dp[i][j][]+;
pre[i+][j][] = -;
}
if(dp[i][j][]+ < dp[i+][j][]) {
dp[i+][j][] = dp[i][j][]+;
pre[i+][j][] = -;
}
if(dp[i][j][]+ < dp[i+][j][]) {
dp[i+][j][] = dp[i][j][]+;
pre[i+][j][] = -;
}
}
}
if(dp[n][][] >= inf && dp[n][][] >= inf) {
puts("-1");
return ;
}
if(dp[n][][] < dp[n][][]) {
puts("");
return ;
}
int j = ,num = n - dp[n][][];
for(int i = n; i >= ; --i) {
if(pre[i][j][] == ) {
ans[num--] = a[i];
j = ((j - a[i])% + ) % ;
}
if(num == ) break;
}
for(int i = ; i <= n - dp[n][][]; ++i) cout<<ans[i];
return ;
}
Educational Codeforces Round 18 C. Divide by Three DP的更多相关文章
- Educational Codeforces Round 53 E. Segment Sum(数位DP)
Educational Codeforces Round 53 E. Segment Sum 题意: 问[L,R]区间内有多少个数满足:其由不超过k种数字构成. 思路: 数位DP裸题,也比较好想.由于 ...
- Educational Codeforces Round 18
A. New Bus Route 题目大意:给出n个不同的数,问差值最小的数有几对.(n<=200,000) 思路:排序一下,差值最小的一定是相邻的,直接统计即可. #include<cs ...
- Educational Codeforces Round 18 D
Description T is a complete binary tree consisting of n vertices. It means that exactly one vertex i ...
- Educational Codeforces Round 18 B
Description n children are standing in a circle and playing the counting-out game. Children are numb ...
- Educational Codeforces Round 18 A
Description There are n cities situated along the main road of Berland. Cities are represented by th ...
- Educational Codeforces Round 16 E. Generate a String dp
题目链接: http://codeforces.com/problemset/problem/710/E E. Generate a String time limit per test 2 seco ...
- Educational Codeforces Round 8 D. Magic Numbers 数位DP
D. Magic Numbers 题目连接: http://www.codeforces.com/contest/628/problem/D Description Consider the deci ...
- Educational Codeforces Round 19 E. Array Queries(暴力)(DP)
传送门 题意 给出n个数,q个询问,每个询问有两个数p,k,询问p+k+a[p]操作几次后超过n 分析 分块处理,在k<sqrt(n)时,用dp,大于sqrt(n)用暴力 trick 代码 #i ...
- Educational Codeforces Round 67 E.Tree Painting (树形dp)
题目链接 题意:给你一棵无根树,每次你可以选择一个点从白点变成黑点(除第一个点外别的点都要和黑点相邻),变成黑点后可以获得一个权值(白点组成连通块的大小) 问怎么使权值最大 思路:首先,一但根确定了, ...
随机推荐
- 树莓派 - 蓝牙 (1) 试试Beacon
首先先了解一下bluez, 以及常用的tools. - hcitool.bluetoothctl等工具,可以进行BLE设备的扫描.连接.配对.广播等操作: - hcitool可以发送HCI comma ...
- JS提前声明和定义方式
来源:JS的函数定义方式以及对声明的提前 以下代码,声明语句会被提前到当前作用域(全局作用域和函数作用域)的顶部.但赋值语句不会提前,依然留在原地 var x = function(){}; var ...
- MySQL数据库安装与Navicat Premium 12 安装与破解
一.文件下载: MySQL:官网:https://www.mysql.com/downloads/(现在最新的是5.7版) 下载路径:"Downloads" ==>> ...
- 《算法导论》— Chapter 6 堆排序
序 本文主要介绍堆排序算法(HeapSort),堆排序像合并排序而不像插入排序,堆排序的运行时间为O(nlgn):像插入排序而不像合并排序,它是一种原地(in place)排序算法.在任何时候,数组中 ...
- Saving James Bond - Easy Version 原创 2017年11月23日 13:07:33
06-图2 Saving James Bond - Easy Version(25 分) This time let us consider the situation in the movie &q ...
- 【01】Firebug 教程
Firebug 教程 什么是 Firebug? Firebug 是一个开源的web开发工具. 现在浏览器自带firebug了. 安装 Firebug Firebug下载地址: https: ...
- ELK的简单安装使用
ELK ELK是什么? Elasticsearch LogStash Kibana 1,简单的安装 我采用的是本地window环境: 下载的包如下: 首先安装的是jdk8,安装完成之后,设 ...
- 大数据学习——采集文件到HDFS
采集需求:比如业务系统使用log4j生成的日志,日志内容不断增加,需要把追加到日志文件中的数据实时采集到hdfs 根据需求,首先定义以下3大要素 l 采集源,即source——监控文件内容更新 : ...
- 【模板】prim的heap优化
简单的代码.. 时间复杂度为O((n + m)logn) 大部分情况下还是跑不过kruskal的,慎用. #include <cstdio> #include <queue> ...
- POJ2014 Flow Layout
Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 3161 Accepted: 2199 Description A f ...