1089: [SCOI2003]严格n元树

Time Limit: 1 Sec  Memory Limit: 162 MB
Submit: 1899  Solved: 954
[Submit][Status][Discuss]

Description

  如果一棵树的所有非叶节点都恰好有n个儿子,那么我们称它为严格n元树。如果该树中最底层的节点深度为d
(根的深度为0),那么我们称它为一棵深度为d的严格n元树。例如,深度为2的严格2元树有三个,如下图:

  给出n, d,编程数出深度为d的n元树数目。

Input

  仅包含两个整数n, d( 0   <   n   <   =   32,   0  < =   d  < = 16)

Output

  仅包含一个数,即深度为d的n元树的数目。

Sample Input

【样例输入1】
2 2

【样例输入2】
2 3

【样例输入3】
3 5

Sample Output

【样例输出1】
3

【样例输出2】
21

【样例输出2】
58871587162270592645034001

/*
定义S[i]代表深度<=i的严格n元树的个数
那么最后S[d]-S[d-1]就是答案
那么对于S[i],我们由S[i-1]递推来,
我们考虑新加一个根节点,然后根节点有n个子节点,每个子节点都可以建一颗深度<=i-1的树,那么每个
子节点都有S[i-1]种选法,那么n个子节点就有S[i-1]^n选法,再加上都不选,就是深度为0的情况
那么S[i]:=(S[i-1]^n)+1;
*/
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<iomanip>
using namespace std;
struct long_int{
int num[],cnt;
void operator = (int y)
{
num[]=y;cnt=;
}
int& operator [] (int x)
{
return num[x];
}
}S[];
void operator *= (long_int &x,long_int &y)
{
long_int z=S[];
int i,j;
for(i=;i<=x.cnt;i++)
for(j=;j<=y.cnt;j++)
{
z[i+j-]+=x[i]*y[j];
z[i+j]+=z[i+j-]/;
z[i+j-]%=;
}
z.cnt=x.cnt+y.cnt;
if(!z[z.cnt])--z.cnt;
x=z;
}
void operator ++ (long_int &x)
{
int i=;x[]++;
while(x[i]==)x[i]=,x[++i]++;
}
long_int operator - (long_int &x,long_int &y)
{
long_int z=S[];
int i;
for(i=;i<=x.cnt;i++)
{
z[i]+=x[i]-y[i];
if(z[i]<) z[i]+=,z[i+]--;
if(z[i]) z.cnt=i;
}
return z;
}
long_int operator ^ (long_int x,int y)
{
long_int z=S[];z=;
while(y)
{
if(y&) z*=x;
x*=x;y>>=;
}
return z;
}
ostream& operator << (ostream &os,long_int x)
{
int i;
os<<x[x.cnt];
for(i=x.cnt-;i;i--)
os<<setfill('')<<setw()<<x[i];
//os<<x[i];
return os;
}
int n,d;
int main()
{
int i;
cin>>n>>d;
if(!d)
{
puts("");return ;
}
S[]=;
for(i=;i<=d;i++)
S[i]=S[i-]^n,++S[i];
cout<<S[d]-S[d-]<<endl;
}
 
 

bzoj1089 [SCOI2003]严格n元树(dp+高精)的更多相关文章

  1. BZOJ1089:[SCOI2003]严格n元树(DP,高精度)

    Description 如果一棵树的所有非叶节点都恰好有n个儿子,那么我们称它为严格n元树.如果该树中最底层的节点深度为d (根的深度为0),那么我们称它为一棵深度为d的严格n元树.例如,深度为2的严 ...

  2. BZOJ1089: [SCOI2003]严格n元树

    1089: [SCOI2003]严格n元树 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 762  Solved: 387[Submit][Status ...

  3. BZOJ1089 [SCOI2003]严格n元树 【dp + 高精】

    Description 如果一棵树的所有非叶节点都恰好有n个儿子,那么我们称它为严格n元树.如果该树中最底层的节点深度为d (根的深度为0),那么我们称它为一棵深度为d的严格n元树.例如,深度为2的严 ...

  4. P4295 [SCOI2003]严格N元树 DP

    思路:DP 提交:\(5\)次 错因:2次高精写错(我太菜了),2次写错特判 题解: 设\(f[i]\)表示深度\(\leq i\)的严格\(n\)元树的数目,有 \[f[i]=pow(f[i-1], ...

  5. [BZOJ1089][SCOI2003]严格n元树(递推+高精度)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1089 分析: 第一感觉可以用一个通式求出来,但是考虑一下很麻烦,不好搞的.很容易发现最 ...

  6. bzoj 1089 [SCOI2003]严格n元树(DP+高精度)

    1089: [SCOI2003]严格n元树 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 1250  Solved: 621[Submit][Statu ...

  7. 【BZOJ1089】[SCOI2003]严格n元树(高精度,动态规划)

    [BZOJ1089][SCOI2003]严格n元树(高精度,动态规划) 题面 BZOJ 洛谷 题解 设\(f[i]\)表示深度为\(i\)的\(n\)元树个数.然后我们每次加入一个根节点,然后枚举它的 ...

  8. SCOI2003 严格N元树

    SCOI2003 严格N元树 Description 如果一棵树的所有非叶节点都恰好有n个儿子,那么我们称它为严格n元树.如果该树中最底层的节点深度为d (根的深度为0),那么我们称它为一棵深度为d的 ...

  9. BZOJ 1089: [SCOI2003]严格n元树

    1089: [SCOI2003]严格n元树 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 1591  Solved: 795[Submit][Statu ...

随机推荐

  1. Storm 开箱笔记

    目录 Storm 开箱 1. 什么是 Storm 2. Hello World(WordCountTopology) 3. 常用API 4. 基本概念 5. 流分组策略 6. 并行度 7. Acker ...

  2. IntelliJ IDEA 环境设置——侧栏显示类中所有方法

    myeclipse默认会在右侧栏显示类的所有方法框,但是IDEA里并没有这样的初始化设置 那么怎样显示这个功能? 1.点击工具栏View-->Tool Windows-->Structur ...

  3. 一篇入门MongoDB

    目录 1.MongoDB 基本介绍 2.MongoDB 基本概念 3.数据库操作 4.集合操作 5.文档操作 6.查询条件 7.索引 1.MongoDB 基本介绍 (1)安装 MongoDB 简单来说 ...

  4. sublime3注册码

    TwitterInc User License EA7E 1D77F72E 390CDD93 4DCBA022 FAF60790 61AA12C0 A37081C5 D0316412 4584D136 ...

  5. BNUOJ 13358 Binary Apple Tree

    Binary Apple Tree Time Limit: 1000ms Memory Limit: 16384KB This problem will be judged on Ural. Orig ...

  6. [luoguP1220] 关路灯(DP)

    传送门 如果去关某一个灯,那么途中经过的灯都能关闭,那么就是连续一段区间,区间DP. f[i][j][0] 表示关完 i, j 这个区间且在 i 这个位置 f[i][j][1] 表示关完 i, j 这 ...

  7. Uva12657 Boxes in a Line

    题目链接:传送门 分析:每次操作都会花费大量时间,显然我们只需要关注每个元素的左边是啥,右边是啥就够了,那么用双向链表,l[i]表示i左边的数,r[i]表示i右边的数,每次操作模拟一下数组的变化就好了 ...

  8. poj 2112

    #include <cstdio> #include <cstring> ;//点数的最大值 ;//边数的最大值 const int INF=0x3fffffff; struc ...

  9. [bzoj1821][JSOI2010]部落划分(贪心)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1821 分析:题目看起来很吊,但只要贪心就行了,每次取相邻最近的两个点所在的集合合并知道 ...

  10. 安装Ubuntu 16.04时出现:没有定义根文件系统,请到分区菜单修改

    在安装Ubuntu 16.04时,尤其是选项空闲硬盘新建分区安装时,容易出现这种情况,这个是由于没有配置挂载点导致的,解决方法如下: 在挂在点输入“/”. 原理: Linux和Windows的文件系统 ...