1089: [SCOI2003]严格n元树

Time Limit: 1 Sec  Memory Limit: 162 MB
Submit: 1899  Solved: 954
[Submit][Status][Discuss]

Description

  如果一棵树的所有非叶节点都恰好有n个儿子,那么我们称它为严格n元树。如果该树中最底层的节点深度为d
(根的深度为0),那么我们称它为一棵深度为d的严格n元树。例如,深度为2的严格2元树有三个,如下图:

  给出n, d,编程数出深度为d的n元树数目。

Input

  仅包含两个整数n, d( 0   <   n   <   =   32,   0  < =   d  < = 16)

Output

  仅包含一个数,即深度为d的n元树的数目。

Sample Input

【样例输入1】
2 2

【样例输入2】
2 3

【样例输入3】
3 5

Sample Output

【样例输出1】
3

【样例输出2】
21

【样例输出2】
58871587162270592645034001

/*
定义S[i]代表深度<=i的严格n元树的个数
那么最后S[d]-S[d-1]就是答案
那么对于S[i],我们由S[i-1]递推来,
我们考虑新加一个根节点,然后根节点有n个子节点,每个子节点都可以建一颗深度<=i-1的树,那么每个
子节点都有S[i-1]种选法,那么n个子节点就有S[i-1]^n选法,再加上都不选,就是深度为0的情况
那么S[i]:=(S[i-1]^n)+1;
*/
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<iomanip>
using namespace std;
struct long_int{
int num[],cnt;
void operator = (int y)
{
num[]=y;cnt=;
}
int& operator [] (int x)
{
return num[x];
}
}S[];
void operator *= (long_int &x,long_int &y)
{
long_int z=S[];
int i,j;
for(i=;i<=x.cnt;i++)
for(j=;j<=y.cnt;j++)
{
z[i+j-]+=x[i]*y[j];
z[i+j]+=z[i+j-]/;
z[i+j-]%=;
}
z.cnt=x.cnt+y.cnt;
if(!z[z.cnt])--z.cnt;
x=z;
}
void operator ++ (long_int &x)
{
int i=;x[]++;
while(x[i]==)x[i]=,x[++i]++;
}
long_int operator - (long_int &x,long_int &y)
{
long_int z=S[];
int i;
for(i=;i<=x.cnt;i++)
{
z[i]+=x[i]-y[i];
if(z[i]<) z[i]+=,z[i+]--;
if(z[i]) z.cnt=i;
}
return z;
}
long_int operator ^ (long_int x,int y)
{
long_int z=S[];z=;
while(y)
{
if(y&) z*=x;
x*=x;y>>=;
}
return z;
}
ostream& operator << (ostream &os,long_int x)
{
int i;
os<<x[x.cnt];
for(i=x.cnt-;i;i--)
os<<setfill('')<<setw()<<x[i];
//os<<x[i];
return os;
}
int n,d;
int main()
{
int i;
cin>>n>>d;
if(!d)
{
puts("");return ;
}
S[]=;
for(i=;i<=d;i++)
S[i]=S[i-]^n,++S[i];
cout<<S[d]-S[d-]<<endl;
}
 
 

bzoj1089 [SCOI2003]严格n元树(dp+高精)的更多相关文章

  1. BZOJ1089:[SCOI2003]严格n元树(DP,高精度)

    Description 如果一棵树的所有非叶节点都恰好有n个儿子,那么我们称它为严格n元树.如果该树中最底层的节点深度为d (根的深度为0),那么我们称它为一棵深度为d的严格n元树.例如,深度为2的严 ...

  2. BZOJ1089: [SCOI2003]严格n元树

    1089: [SCOI2003]严格n元树 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 762  Solved: 387[Submit][Status ...

  3. BZOJ1089 [SCOI2003]严格n元树 【dp + 高精】

    Description 如果一棵树的所有非叶节点都恰好有n个儿子,那么我们称它为严格n元树.如果该树中最底层的节点深度为d (根的深度为0),那么我们称它为一棵深度为d的严格n元树.例如,深度为2的严 ...

  4. P4295 [SCOI2003]严格N元树 DP

    思路:DP 提交:\(5\)次 错因:2次高精写错(我太菜了),2次写错特判 题解: 设\(f[i]\)表示深度\(\leq i\)的严格\(n\)元树的数目,有 \[f[i]=pow(f[i-1], ...

  5. [BZOJ1089][SCOI2003]严格n元树(递推+高精度)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1089 分析: 第一感觉可以用一个通式求出来,但是考虑一下很麻烦,不好搞的.很容易发现最 ...

  6. bzoj 1089 [SCOI2003]严格n元树(DP+高精度)

    1089: [SCOI2003]严格n元树 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 1250  Solved: 621[Submit][Statu ...

  7. 【BZOJ1089】[SCOI2003]严格n元树(高精度,动态规划)

    [BZOJ1089][SCOI2003]严格n元树(高精度,动态规划) 题面 BZOJ 洛谷 题解 设\(f[i]\)表示深度为\(i\)的\(n\)元树个数.然后我们每次加入一个根节点,然后枚举它的 ...

  8. SCOI2003 严格N元树

    SCOI2003 严格N元树 Description 如果一棵树的所有非叶节点都恰好有n个儿子,那么我们称它为严格n元树.如果该树中最底层的节点深度为d (根的深度为0),那么我们称它为一棵深度为d的 ...

  9. BZOJ 1089: [SCOI2003]严格n元树

    1089: [SCOI2003]严格n元树 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 1591  Solved: 795[Submit][Statu ...

随机推荐

  1. 搜索--P1101 单词方阵

    题目描述 给一n×n的字母方阵,内可能蕴含多个"yizhong"单词.单词在方阵中是沿着同一方向连续摆放的.摆放可沿着 8 个方向的任一方向,同一单词摆放时不再改变方向,单词与单词 ...

  2. Loj #6000.「 网络流 24 题 」搭配飞行员

    解题思路 考虑如何建模. 既然是网络流,那么肯定要有源点和汇点.而这个题目并没有什么明显的源点和汇点. 想一想,如果一个飞机能够起飞的话,那么必定有一对可以配对的正副驾驶员.也就是说一条曾广路能够上必 ...

  3. Win10中创建Hyper-V虚拟机

    Win10虚拟机创建方法方法 1 开始菜单->所有应用->Windows系统->控制面板,程序->启用或关闭Windows功能,勾选Hyper-V下所有选项 如果Hyper-V ...

  4. page对象的使用及常见方法

    page对象的使用及常见方法 制作人:全心全意 page对象代表JSP本身,只有在JSP页面内才是合法的.page对象本质上是包含当前Servlet接口引用的变量,可以看作是this关键字的别名. p ...

  5. 洛谷 4364 [九省联考2018]IIIDX

    [题解] 一眼可以想到一个类似二叉树后序遍历的贪心做法,然而这个做法在有相同数字的情况下是错误的.最简单的反例就是n=4,d={1,1,1,2},正解是1,1,2,1,而贪心是1,1,1,2. 所以这 ...

  6. redis—持久化

    Redis持久化 概述 Redis的强大性能很大程度上都是因为所有数据都是存储在内存中的,然而当Redis重启后,所有存储在内存中的数据将会丢失,在很多情况下是无法容忍这样的事情的.所以,我们需要将内 ...

  7. [luoguP2782] 友好城市(DP)

    传送门 转化成 lis 后 n2 搞就行 ——代码 #include <cstdio> #include <iostream> #include <algorithm&g ...

  8. codevs1213 解的个数

    题目描述 Description 已知整数x,y满足如下面的条件: ax+by+c = 0 p<=x<=q r<=y<=s 求满足这些条件的x,y的个数. 输入描述 Input ...

  9. oracle11g dataguard failover重建后归档日志没有被应用被NO的问题

    1.主库从库归档记录不一致.例如以下所看到的: 做完failover后,坏的旧主库变成了新的从库,可是新从库的归档日志记录不一致,就是archive log list;出来的和v$archived_l ...

  10. 3.5 在批处理模式下使用mysql

    在前面的章节中,你交互式地使用mysql输入查询而且查看结果.你也能够以批模式执行mysql.为了做到这些.把你想要执行的命令放在一个文件里,然后告诉mysql从文件读取它的输入: shell> ...