Problem Description

There are a lot of trees in an area. A peasant wants to buy a rope to surround all these trees. So at first he must know the minimal required length of the rope. However, he does not know how to calculate it. Can you help him? 
The diameter and length of the trees are omitted, which means a tree can be seen as a point. The thickness of the rope is also omitted which means a rope can be seen as a line.
There are no more than 100 trees.

Input

The input contains one or more data sets. At first line of each input data set is number of trees in this data set, it is followed by series of coordinates of the trees. Each coordinate is a positive integer pair, and each integer is less than 32767. Each pair is separated by blank.
Zero at line for number of trees terminates the input for your program.

Output

The minimal length of the rope. The precision should be 10^-2.

Sample Input

9
12 7
24 9
30 5
41 9
80 7
50 87
22 9
45 1
50 7
0

Sample Output

243.06
解题思路:入门凸包!有一篇博文讲得非常好非常易懂,链接:凸包详解。再贴一张如何用叉积来判断栈顶的点是否为凸包上合法顶点的依据图。时间复杂度主要花在排序上为O(nlogn)。
以下是Graham扫描算法的演示--->逐步构建凸包的过程:
AC代码(62ms):详细注释看代码。选取基点的标准是找到y值最小的点,如果有多个,选择最左边即横坐标最小的那个。
 #include<iostream>
#include<string.h>
#include<algorithm>
#include<cstdio>
#include<cmath>
using namespace std;
const int maxn=;
const double PI=acos(-1.0);
struct node{int x,y;};
node vex[maxn];//存入所有坐标点
node stackk[maxn];//凸包中所有的点
bool cmp1(node a,node b){//按点的坐标排序
if(a.y==b.y)return a.x<b.x;//如果纵坐标相同,则按横坐标升序排
else return a.y<b.y;//否则按纵坐标升序排
}
bool cmp2(node a,node b){//以基点为坐标原点,极角按升序排,这里可用atan2函数或者叉积来进行极角排序,但是用atan2函数来排序效率高时间快,不过精度比叉积低
double A=atan2(a.y-stackk[].y,a.x-stackk[].x);//返回的是原点至点(x,y)的方位角,即与x轴的夹角
double B=atan2(b.y-stackk[].y,b.x-stackk[].x);
if(A!=B)return A<B;//逆时针方向为正值,极角小的排在前面
else return a.x<b.x;//如果极角相同,则横坐标在前面的靠前排列
}
int cross(node p0,node p1,node p2){//计算两个向量a、b(a=(x1,y1),b=(x2,y2))的叉积公式:a×b=x1y2-x2y1 ===> p0p1=(x1-x0,y1-y0),p0p2=(x2-x0,y2-y0)
return (p1.x-p0.x)*(p2.y-p0.y)-(p2.x-p0.x)*(p1.y-p0.y);
}
double dis(node a,node b){//计算两点之间的距离
return sqrt((a.x-b.x)*(a.x-b.x)*1.0+(a.y-b.y)*(a.y-b.y));
}
int main(){
int t;
while(~scanf("%d",&t)&&t){
for(int i=;i<t;++i)//输入t个点
scanf("%d%d",&vex[i].x,&vex[i].y);
if(t==)printf("%.2f\n",0.00);//如果只有一个点,则周长为0.00
else if(t==)printf("%.2f\n",dis(vex[],vex[]));//如果只有两个点,则周长为两个点的距离
else{
memset(stackk,,sizeof(stackk));//清0
sort(vex,vex+t,cmp1);//先按坐标点的位置进行排序
stackk[]=vex[];//取出基点
sort(vex+,vex+t,cmp2);//将剩下的坐标点按极角进行排序,以基点为坐标原点
stackk[]=vex[];//将凸包中的第二个点存入凸集中
int top=;//当前凸包中拥有点的个数为top+1
for(int i=;i<t;++i){//不断地找外围的坐标点
while(top>&&cross(stackk[top-],stackk[top],vex[i])<=)top--;//如果叉积为负数或0(0表示两向量共线),则弹出栈顶元素
//虽然第2个凸点显然是最外围的一点,但加上top>0保证了栈中至少有2个凸点
stackk[++top]=vex[i];
}
double s=;
for(int i=;i<=top;++i)//计算凸包的周长
s+=dis(stackk[i-],stackk[i]);
s+=dis(stackk[top],vex[]);//最后一个点和第一个点之间的距离
printf("%.2f\n",s);
}
}
return ;
}

AC代码二(31ms):Andrew算法,一次坐标排序,两次构造成一个完整的凸包,时间复杂度为O(nlogn),但实际上比Graham扫描算法快很多,具体讲解-->凸包解法总结

 #include<iostream>
#include<string.h>
#include<algorithm>
#include<cstdio>
#include<cmath>
using namespace std;
const int maxn=;
const double PI=acos(-1.0);
struct node{int x,y;}vex[maxn],stackk[maxn];
bool cmp(node a,node b){//按点的坐标排序
return (a.y<b.y)||(a.y==b.y&&a.x<b.x);
}
int cross(node p0,node p1,node p2){
return (p1.x-p0.x)*(p2.y-p0.y)-(p2.x-p0.x)*(p1.y-p0.y);
}
double dis(node a,node b){
return sqrt((a.x-b.x)*(a.x-b.x)*1.0+(a.y-b.y)*(a.y-b.y));
}
int main(){
int t;
while(~scanf("%d",&t)&&t){
for(int i=;i<t;++i)//输入t个点
scanf("%d%d",&vex[i].x,&vex[i].y);
if(t==)printf("%.2f\n",0.00);
else if(t==)printf("%.2f\n",dis(vex[],vex[]));
else{
memset(stackk,,sizeof(stackk));//清0
sort(vex,vex+t,cmp);//一次坐标排序,两次构造成一个完整的凸包
int top=-;
for(int i=;i<t;++i){//构造凸包下侧
while(top>&&cross(stackk[top-],stackk[top],vex[i])<=)top--;
stackk[++top]=vex[i];
}
for(int i=t-,k=top;i>=;--i){//构造凸包上侧,默认此时凸包中只有一个顶点n-1,因此top要大于k,起点再被包含一次且一定被包含
while(top>k&&cross(stackk[top-],stackk[top],vex[i])<=)top--;
stackk[++top]=vex[i];
}
double s=;
for(int i=;i<=top;++i)//计算凸包周长
s+=dis(stackk[i-],stackk[i]);
printf("%.2f\n",s);
}
}
return ;
}

题解报告:hdu 1392 Surround the Trees(凸包入门)的更多相关文章

  1. HDU - 1392 Surround the Trees (凸包)

    Surround the Trees:http://acm.hdu.edu.cn/showproblem.php?pid=1392 题意: 在给定点中找到凸包,计算这个凸包的周长. 思路: 这道题找出 ...

  2. HDU 1392 Surround the Trees (凸包周长)

    题目链接:HDU 1392 Problem Description There are a lot of trees in an area. A peasant wants to buy a rope ...

  3. hdu 1392 Surround the Trees 凸包模板

    Surround the Trees Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Other ...

  4. hdu 1392 Surround the Trees (凸包)

    Surround the Trees Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Other ...

  5. hdu 1392 Surround the Trees 凸包裸题

    Surround the Trees Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Other ...

  6. HDU 1392 Surround the Trees(凸包*计算几何)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1392 这里介绍一种求凸包的算法:Graham.(相对于其它人的解释可能会有一些出入,但大体都属于这个算 ...

  7. HDU 1392 Surround the Trees(凸包入门)

    Surround the Trees Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Other ...

  8. hdu 1392:Surround the Trees(计算几何,求凸包周长)

    Surround the Trees Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Other ...

  9. HDUJ 1392 Surround the Trees 凸包

    Surround the Trees Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Other ...

  10. HDU-1392 Surround the Trees,凸包入门!

    Surround the Trees 此题讨论区里大喊有坑,原谅我没有仔细读题还跳过了坑点. 题意:平面上有n棵树,选一些树用绳子围成一个包围圈,使得所有的树都在这个圈内. 思路:简单凸包入门题,凸包 ...

随机推荐

  1. 电脑突然死机,编译报错dll缺少依赖项

    由于ASP.NET缓存没更新的问题(我的就是这个问题.电脑突然死机导致的). 把这个文件夹下的文件所有删除C:\Windows\Microsoft.NET\Framework\v2.0.50727\T ...

  2. Shell hook

    [目的]实现 ll -as   +hook+     clear Shell脚本及钩子 - CSDN博客 https://blog.csdn.net/shengzhu1/article/details ...

  3. 前端遇上Go: 静态资源增量更新的新实践

    前端遇上Go: 静态资源增量更新的新实践https://mp.weixin.qq.com/s/hCqQW1F8FngPPGZAisAWUg 前端遇上Go: 静态资源增量更新的新实践 原创: 洋河 美团 ...

  4. h5 getUserMedia error PermissionDeniedError

    HTML5 在使用非 localhost 地址访问时打开摄像头失败 .报getUserMedia error PermissionDeniedError,火狐下是可以正常调取的. 需要https: 火 ...

  5. poj 1195 Mobile phones 解题报告

    题目链接:http://poj.org/problem?id=1195 题目意思:有一部 mobie phone 基站,它的面积被分成一个个小正方形(1 * 1 的大小),所有的小正方形的面积构成了一 ...

  6. DGA聚类 使用DBScan

    features = sc.parallelize(data_group[idx]).map(lambda x: (x.host_ip+'^'+x.domain, 1)).reduceByKey(op ...

  7. lock的两种方式

    假设现在我们有100个数据项可以读写.有若干个线程,任何一个线程可能对任何一个数据项尽心读写. 但是,如果不同的线程在对同一个数据项进行读写,就可能发生错误.需要使用lock进行控制. 比如线程x要对 ...

  8. HDU 1711(KMP)字符串匹配

    链接  HDU 1711 Number Sequence KMP 算法 我以自己理解写的,写的不对,不明白的地方海王子出来,一起共同学习: 字符串匹配 就是KMP,一般思想,用一个for循环找开头   ...

  9. oracle自动表分析

    oracle 表的统计信息,跟他的执行计划很有关联 执行计划的正常是否,跟SQL的执行速度很有关系 首先讲解一下如何查看一个数据库的是否开启自动统计分析 1.查看参数:STATISTICS_LEVEL ...

  10. ubuntu中使用apt-get安装zbar

    apt-get是linux中常用的shell命令,适用于deb包管理式的操作系统,主要用于自动从互联网的软件仓库中搜索.安装.升级.卸载软件或操作系统.apt-get命令一般需要root权限执行,所以 ...