掌握Spark机器学习库-09.6-LDA算法
数据集
iris.data
数据集概览

代码
package org.apache.spark.examples.examplesforml
import org.apache.spark.ml.clustering.{KMeans, LDA}
import org.apache.spark.SparkConf
import org.apache.spark.ml.feature.VectorAssembler
import org.apache.spark.sql.SparkSession
import scala.util.Random
object lLDA {
def main(args: Array[String]): Unit = {
val conf = new SparkConf().setMaster("local").setAppName("iris")
val spark = SparkSession.builder().config(conf).getOrCreate()
val file = spark.read.format("csv").load("D:\\9-4LDA算法\\iris.data")
file.show()
import spark.implicits._
val random = new Random()
val data = file.map(row => {
val label = row.getString(4) match {
case "Iris-setosa" => 0
case "Iris-versicolor" => 1
case "Iris-virginica" => 2
}
(row.getString(0).toDouble,
row.getString(1).toDouble,
row.getString(2).toDouble,
row.getString(3).toDouble,
label,
random.nextDouble())
}).toDF("_c0", "_c1", "_c2", "_c3", "label", "rand").sort("rand")
val assembler = new VectorAssembler()
.setInputCols(Array("_c0", "_c1", "_c2", "_c3"))
.setOutputCol("features")
val dataset = assembler.transform(data)
val Array(train, test) = dataset.randomSplit(Array(0.8, 0.2))
train.show()
/*
val kmeans = new KMeans().setFeaturesCol("features").setK(3).setMaxIter(20)
val model = kmeans.fit(train)
model.transform(train).show()
*/
val lda = new LDA().setFeaturesCol("features").setK(3).setMaxIter(40)
val model = lda.fit(train)
val prediction = model.transform(train)
//prediction.show()
val ll = model.logLikelihood(train)
val lp = model.logPerplexity(train)
// Describe topics.
val topics = model.describeTopics(3)
prediction.select("label","topicDistribution").show(false)
println("The topics described by their top-weighted terms:")
topics.show(false)
println(s"The lower bound on the log likelihood of the entire corpus: $ll")
println(s"The upper bound on perplexity: $lp")
}
}
输出结果


掌握Spark机器学习库-09.6-LDA算法的更多相关文章
- 掌握Spark机器学习库-09.3-kmeans算法实现分类
数据集 iris.data 数据集概览 代码 package org.apache.spark.examples.hust.hml.examplesforml import org.apache.s ...
- 掌握Spark机器学习库-07-线性回归算法概述
1)简介 自变量,因变量,线性关系,相关系数,一元线性关系,多元线性关系(平面,超平面) 2)使用线性回归算法的前提 3)应用例子 沸点与气压 浮力与表面积
- 掌握Spark机器学习库(课程目录)
第1章 初识机器学习 在本章中将带领大家概要了解什么是机器学习.机器学习在当前有哪些典型应用.机器学习的核心思想.常用的框架有哪些,该如何进行选型等相关问题. 1-1 导学 1-2 机器学习概述 1- ...
- UCI机器学习库和一些相关算法(转载)
UCI机器学习库和一些相关算法 各种机器学习任务的顶级结果(论文)汇总 https://github.com//RedditSota/state-of-the-art-result-for-machi ...
- 掌握Spark机器学习库-07.14-保序回归算法实现房价预测
数据集 house.csv 数据集概览 代码 package org.apache.spark.examples.examplesforml import org.apache.spark.ml.cl ...
- 掌握Spark机器学习库-08.2-朴素贝叶斯算法
数据集 iris.data 数据集概览 代码 import org.apache.spark.SparkConf import org.apache.spark.ml.classification.{ ...
- 掌握Spark机器学习库-07-回归算法原理
1)机器学习模型理解 统计学习,神经网络 2)预测结果的衡量 代价函数(cost function).损失函数(loss function) 3)线性回归是监督学习
- 掌握Spark机器学习库-07.6-线性回归实现房价预测
数据集 house.csv 数据概览 代码 package org.apache.spark.examples.examplesforml import org.apache.spark.ml.fea ...
- Spark机器学习(11):协同过滤算法
协同过滤(Collaborative Filtering,CF)算法是一种常用的推荐算法,它的思想就是找出相似的用户或产品,向用户推荐相似的物品,或者把物品推荐给相似的用户.怎样评价用户对商品的偏好? ...
随机推荐
- HDU 5544 Ba Gua Zhen dfs+高斯消元
Ba Gua Zhen Problem Description During the Three-Kingdom period, there was a general named Xun Lu wh ...
- spring boot redis缓存入门
摘要: 原创出处 泥瓦匠BYSocket 下载工程 springboot-learning-example ,工程代码注解很详细.JeffLi1993/springboot-learning-exam ...
- javaScript复制粘贴
1.clipboard.js 实现了纯 JavaScript (无 Flash)的浏览器内容复制到系统剪贴板的功能.可以在浏览器和 Node 环境中使用.支持 Chrome 42+.Firefox 4 ...
- Gradle 安装
Gradle介绍 Gradle是一个基于JVM的构建工具,它提供了: 像Ant一样,通用灵活的构建工具 可以切换的,基于约定的构建框架 强大的多工程构建支持 基于Apache Ivy的强大的依赖管理 ...
- leetcode 659. Split Array into Consecutive Subsequences
You are given an integer array sorted in ascending order (may contain duplicates), you need to split ...
- linux下开机启动svn配置
1.在 vi /etc/rc.local文件下添加以下: /home/svn/subversion-1.8.18/bin/svnserve -d --listen-port 3690 -r /home ...
- 转【前端基础进阶之Promise】
前言 Promise的重要性我认为我没有必要多讲,概括起来说就是必须得掌握,而且还要掌握透彻.这篇文章的开头,主要跟大家分析一下,为什么会有Promise出现. 在实际的使用当中,有非常多的应用场景我 ...
- char-rnn-tensorflow源码解析及结构流程分析
char-rnn-tensorflow由飞飞弟子karpathy编写,展示了如何用tensorflow来搭建一个基本的RNN(LSTM)网络,并进行基于char的seq2seq进行训练. 数据读取部分 ...
- js方式的页面跳转
window.location.href="login.html"; (直接function里面执行 跳转)
- bzoj 3609: [Heoi2014]人人尽说江南好【博弈论】
参考:https://blog.csdn.net/Izumi_Hanako/article/details/80189596 胜负和操作次数有关,先手胜为奇,所以先手期望奇数后手期望偶数,最后一定能达 ...