#include <pcl/io/io.h>
#include <pcl/io/pcd_io.h>
#include <pcl/io/obj_io.h>
#include <pcl/PolygonMesh.h>
//#include <pcl/ros/conversions.h>//formROSMsg所属头文件;
#include <pcl/point_cloud.h>
#include <pcl/io/vtk_lib_io.h>//loadPolygonFileOBJ所属头文件;
//#include <pcl/visualization/pcl_visualizer.h> using namespace std;
using namespace pcl;
int main()
{
pcl::PolygonMesh mesh;
pcl::io::loadPolygonFile("sofa.obj", mesh); pcl::PointCloud<pcl::PointXYZ>::Ptr cloud(new pcl::PointCloud<pcl::PointXYZ>);
pcl::fromPCLPointCloud2(mesh.cloud, *cloud);
pcl::io::savePCDFileASCII("result.pcd", *cloud); cout << cloud->size() << endl; cout << "OK!";
cin.get();
return 0;
}
  • 转换前的obj模型

  • 转换成pcd点云后

提取3D模型的meshes的顶点(Vertex)坐标,对于点云来说点数不够,而且在3D模型存在平面或者是简单立方体的情况下几乎没有点。

所以又需要PCL库了,pcl_mesh_sampling可以轻松解决这个问题。

它是通过调用VTK(Visualization ToolKit)读取模型,在3D模型平面均匀地采样点然后生成点云,并且你可以选择需要的点数, 以及voxel grid的采样距离。

#include <pcl/visualization/pcl_visualizer.h>
#include <pcl/io/pcd_io.h>
#include <pcl/io/vtk_lib_io.h>
#include <pcl/common/transforms.h>
#include <vtkVersion.h>
#include <vtkPLYReader.h>
#include <vtkOBJReader.h>
#include <vtkTriangle.h>
#include <vtkTriangleFilter.h>
#include <vtkPolyDataMapper.h>
#include <pcl/filters/voxel_grid.h>
#include <pcl/console/print.h>
#include <pcl/console/parse.h> inline double
uniform_deviate (int seed)
{
double ran = seed * (1.0 / (RAND_MAX + 1.0));
return ran;
} inline void
randomPointTriangle (float a1, float a2, float a3, float b1, float b2, float b3, float c1, float c2, float c3,
Eigen::Vector4f& p)
{
float r1 = static_cast<float> (uniform_deviate (rand ()));
float r2 = static_cast<float> (uniform_deviate (rand ()));
float r1sqr = std::sqrt (r1);
float OneMinR1Sqr = (1 - r1sqr);
float OneMinR2 = (1 - r2);
a1 *= OneMinR1Sqr;
a2 *= OneMinR1Sqr;
a3 *= OneMinR1Sqr;
b1 *= OneMinR2;
b2 *= OneMinR2;
b3 *= OneMinR2;
c1 = r1sqr * (r2 * c1 + b1) + a1;
c2 = r1sqr * (r2 * c2 + b2) + a2;
c3 = r1sqr * (r2 * c3 + b3) + a3;
p[0] = c1;
p[1] = c2;
p[2] = c3;
p[3] = 0;
} inline void
randPSurface (vtkPolyData * polydata, std::vector<double> * cumulativeAreas, double totalArea, Eigen::Vector4f& p, bool calcNormal, Eigen::Vector3f& n)
{
float r = static_cast<float> (uniform_deviate (rand ()) * totalArea); std::vector<double>::iterator low = std::lower_bound (cumulativeAreas->begin (), cumulativeAreas->end (), r);
vtkIdType el = vtkIdType (low - cumulativeAreas->begin ()); double A[3], B[3], C[3];
vtkIdType npts = 0;
vtkIdType *ptIds = NULL;
polydata->GetCellPoints (el, npts, ptIds);
polydata->GetPoint (ptIds[0], A);
polydata->GetPoint (ptIds[1], B);
polydata->GetPoint (ptIds[2], C);
if (calcNormal)
{
// OBJ: Vertices are stored in a counter-clockwise order by default
Eigen::Vector3f v1 = Eigen::Vector3f (A[0], A[1], A[2]) - Eigen::Vector3f (C[0], C[1], C[2]);
Eigen::Vector3f v2 = Eigen::Vector3f (B[0], B[1], B[2]) - Eigen::Vector3f (C[0], C[1], C[2]);
n = v1.cross (v2);
n.normalize ();
}
randomPointTriangle (float (A[0]), float (A[1]), float (A[2]),
float (B[0]), float (B[1]), float (B[2]),
float (C[0]), float (C[1]), float (C[2]), p);
} void
uniform_sampling (vtkSmartPointer<vtkPolyData> polydata, size_t n_samples, bool calc_normal, pcl::PointCloud<pcl::PointNormal> & cloud_out)
{
polydata->BuildCells ();
vtkSmartPointer<vtkCellArray> cells = polydata->GetPolys (); double p1[3], p2[3], p3[3], totalArea = 0;
std::vector<double> cumulativeAreas (cells->GetNumberOfCells (), 0);
size_t i = 0;
vtkIdType npts = 0, *ptIds = NULL;
for (cells->InitTraversal (); cells->GetNextCell (npts, ptIds); i++)
{
polydata->GetPoint (ptIds[0], p1);
polydata->GetPoint (ptIds[1], p2);
polydata->GetPoint (ptIds[2], p3);
totalArea += vtkTriangle::TriangleArea (p1, p2, p3);
cumulativeAreas[i] = totalArea;
} cloud_out.points.resize (n_samples);
cloud_out.width = static_cast<pcl::uint32_t> (n_samples);
cloud_out.height = 1; for (i = 0; i < n_samples; i++)
{
Eigen::Vector4f p;
Eigen::Vector3f n;
randPSurface (polydata, &cumulativeAreas, totalArea, p, calc_normal, n);
cloud_out.points[i].x = p[0];
cloud_out.points[i].y = p[1];
cloud_out.points[i].z = p[2];
if (calc_normal)
{
cloud_out.points[i].normal_x = n[0];
cloud_out.points[i].normal_y = n[1];
cloud_out.points[i].normal_z = n[2];
}
}
} using namespace pcl;
using namespace pcl::io;
using namespace pcl::console; const int default_number_samples = 100000;
const float default_leaf_size = 0.01f; void
printHelp (int, char **argv)
{
print_error ("Syntax is: %s input.{ply,obj} output.pcd <options>\n", argv[0]);
print_info (" where options are:\n");
print_info (" -n_samples X = number of samples (default: ");
print_value ("%d", default_number_samples);
print_info (")\n");
print_info (
" -leaf_size X = the XYZ leaf size for the VoxelGrid -- for data reduction (default: ");
print_value ("%f", default_leaf_size);
print_info (" m)\n");
print_info (" -write_normals = flag to write normals to the output pcd\n");
print_info (
" -no_vis_result = flag to stop visualizing the generated pcd\n");
} /* ---[ */
int
main (int argc, char **argv)
{
print_info ("Convert a CAD model to a point cloud using uniform sampling. For more information, use: %s -h\n",
argv[0]); if (argc < 3)
{
printHelp (argc, argv);
return (-1);
} // Parse command line arguments
int SAMPLE_POINTS_ = default_number_samples;
parse_argument (argc, argv, "-n_samples", SAMPLE_POINTS_);
float leaf_size = default_leaf_size;
parse_argument (argc, argv, "-leaf_size", leaf_size);
bool vis_result = ! find_switch (argc, argv, "-no_vis_result");
const bool write_normals = find_switch (argc, argv, "-write_normals"); // Parse the command line arguments for .ply and PCD files
std::vector<int> pcd_file_indices = parse_file_extension_argument (argc, argv, ".pcd");
if (pcd_file_indices.size () != 1)
{
print_error ("Need a single output PCD file to continue.\n");
return (-1);
}
std::vector<int> ply_file_indices = parse_file_extension_argument (argc, argv, ".ply");
std::vector<int> obj_file_indices = parse_file_extension_argument (argc, argv, ".obj");
if (ply_file_indices.size () != 1 && obj_file_indices.size () != 1)
{
print_error ("Need a single input PLY/OBJ file to continue.\n");
return (-1);
} vtkSmartPointer<vtkPolyData> polydata1 = vtkSmartPointer<vtkPolyData>::New ();
if (ply_file_indices.size () == 1)
{
pcl::PolygonMesh mesh;
pcl::io::loadPolygonFilePLY (argv[ply_file_indices[0]], mesh);
pcl::io::mesh2vtk (mesh, polydata1);
}
else if (obj_file_indices.size () == 1)
{
vtkSmartPointer<vtkOBJReader> readerQuery = vtkSmartPointer<vtkOBJReader>::New ();
readerQuery->SetFileName (argv[obj_file_indices[0]]);
readerQuery->Update ();
polydata1 = readerQuery->GetOutput ();
} //make sure that the polygons are triangles!
vtkSmartPointer<vtkTriangleFilter> triangleFilter = vtkSmartPointer<vtkTriangleFilter>::New ();
#if VTK_MAJOR_VERSION < 6
triangleFilter->SetInput (polydata1);
#else
triangleFilter->SetInputData (polydata1);
#endif
triangleFilter->Update (); vtkSmartPointer<vtkPolyDataMapper> triangleMapper = vtkSmartPointer<vtkPolyDataMapper>::New ();
triangleMapper->SetInputConnection (triangleFilter->GetOutputPort ());
triangleMapper->Update ();
polydata1 = triangleMapper->GetInput (); bool INTER_VIS = false; if (INTER_VIS)
{
visualization::PCLVisualizer vis;
vis.addModelFromPolyData (polydata1, "mesh1", 0);
vis.setRepresentationToSurfaceForAllActors ();
vis.spin ();
} pcl::PointCloud<pcl::PointNormal>::Ptr cloud_1 (new pcl::PointCloud<pcl::PointNormal>);
uniform_sampling (polydata1, SAMPLE_POINTS_, write_normals, *cloud_1); if (INTER_VIS)
{
visualization::PCLVisualizer vis_sampled;
vis_sampled.addPointCloud<pcl::PointNormal> (cloud_1);
if (write_normals)
vis_sampled.addPointCloudNormals<pcl::PointNormal> (cloud_1, 1, 0.02f, "cloud_normals");
vis_sampled.spin ();
} // Voxelgrid
VoxelGrid<PointNormal> grid_;
grid_.setInputCloud (cloud_1);
grid_.setLeafSize (leaf_size, leaf_size, leaf_size); pcl::PointCloud<pcl::PointNormal>::Ptr voxel_cloud (new pcl::PointCloud<pcl::PointNormal>);
grid_.filter (*voxel_cloud); if (vis_result)
{
visualization::PCLVisualizer vis3 ("VOXELIZED SAMPLES CLOUD");
vis3.addPointCloud<pcl::PointNormal> (voxel_cloud);
if (write_normals)
vis3.addPointCloudNormals<pcl::PointNormal> (voxel_cloud, 1, 0.02f, "cloud_normals");
vis3.spin ();
} if (!write_normals)
{
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_xyz (new pcl::PointCloud<pcl::PointXYZ>);
// Strip uninitialized normals from cloud:
pcl::copyPointCloud (*voxel_cloud, *cloud_xyz);
savePCDFileASCII (argv[pcd_file_indices[0]], *cloud_xyz);
}
else
{
savePCDFileASCII (argv[pcd_file_indices[0]], *voxel_cloud);
}
}

  

PCL学习(二)三维模型转点云 obj转pcd----PCL实现的更多相关文章

  1. PCL学习(四)点云转换为网格

    Remove needless points compute normals surface reconstruction get texture(param 4096 basic) save pro ...

  2. 点云库PCL学习

    1. 点云的提取 点云的获取:RGBD获取 点云的获取:图像匹配获取(通过摄影测量提取点云数据) 点云的获取:三维激光扫描仪 2. PCL简介 PCL是Point Cloud Library的简称,是 ...

  3. PCL学习(一)从PLY文件读入点云数据

    #include <iostream> #include <pcl/io/pcd_io.h> #include <pcl/point_types.h> #inclu ...

  4. 从零开始一起学习SLAM | 你好,点云

    本文提纲 先热热身点云是啥你知道点云优缺点吗?点云库PCL:开发者的福音PCL安装指北炒鸡简单的PCL实践留个作业再走先热热身 小白:hi,师兄,好久不见师兄:师妹好,上周单应矩阵作业做了吗?小白:嗯 ...

  5. PCL学习八叉树

    建立空间索引在点云数据处理中有着广泛的应用,常见的空间索引一般 是自顶而下逐级划分空间的各种空间索引结构,比较有代表性的包括BSP树,KD树,KDB树,R树,四叉树,八叉树等索引结构,而这些结构中,K ...

  6. SpringCloud学习(二):微服务入门实战项目搭建

    一.开始使用Spring Cloud实战微服务 1.SpringCloud是什么? 云计算的解决方案?不是 SpringCloud是一个在SpringBoot的基础上构建的一个快速构建分布式系统的工具 ...

  7. DjangoRestFramework学习二之序列化组件、视图组件 serializer modelserializer

      DjangoRestFramework学习二之序列化组件.视图组件   本节目录 一 序列化组件 二 视图组件 三 xxx 四 xxx 五 xxx 六 xxx 七 xxx 八 xxx 一 序列化组 ...

  8. PCL学习笔记1

    先贴一段代码,从别处抄来的 #include <iostream> #include <pcl/io/pcd_io.h> #include <pcl/point_type ...

  9. Android JNI学习(二)——实战JNI之“hello world”

    本系列文章如下: Android JNI(一)——NDK与JNI基础 Android JNI学习(二)——实战JNI之“hello world” Android JNI学习(三)——Java与Nati ...

随机推荐

  1. java关于Integer设置-128到127的静态缓存

    今天在一个java群里,看到有个群友问到如下为什么第一个为true,第二个为false. System.out.println(Integer.valueOf("50")==Int ...

  2. fixedFluxPressure边界条件【转载】

    转载自:http://blog.sina.com.cn/s/blog_e256415d0102vikh.html fixedFluxPressure是OpenFOAM较新的一个边界条件,表示边界处压力 ...

  3. php语言查询Mysql数据库内容

    通过php语言实现对Mysql数据库的基本操作 1.php页面在进行浏览时需要有php语言执行的环境,本人用的是WampServer软件,只要将项目复制到wampserver_php\wamp\www ...

  4. php发现一个神奇的函数

    echo strtr('aaddffvvbbcc','avc','242'); //22ddff44bb22 echo '<br>'; echo str_replace('ad',22,' ...

  5. error: cannot connect to daemon解决办法

    本文链接:https://blog.csdn.net/ipinki1218/article/details/80704806运行adb shell时出现error: cannot connect to ...

  6. 多网卡下如何配置指定IP走某个路由器(适用于外网不通,但是钉钉服务器通的情况)

    # 多网卡下如何配置指定IP走某个路由器(适用于外网不通,但是钉钉服务器通的情况) ## 如何查看一个进程建立的网络连接,方式一 - 查看进程pid `ps -ef|grep dingtalk`- 查 ...

  7. Spring为什么@Autowired注入的是接口

    1.Spring怎么知道注入哪个实现? As long as there is only a single implementation of the interface and that imple ...

  8. 【集成模型】Boosting

    0 - 思想 Bagging算法思想是减少预测方差(variance),Boosting算法思想是为了减少预测偏差(bias). Boosting算法思想是将“弱学习算法”提升为“强学习算法”.一般来 ...

  9. OSError: image file is truncated (28 bytes not processed)

    解决办法: 在代码中添加两行 from PIL import ImageFile ImageFile.LOAD_TRUNCATED_IMAGES = True

  10. (五)UML之协作图

    一.什么是协作图? 顾名思义协作图就是合作图,有合作就涉及到多个对象. 协作图(Collaboration Diagram /Communication Diagram,也叫合作图)是一种交互图(in ...