小记--------sparksql和DataFrame的小小案例java、scala版本
package cn.spark.study.sql; import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.sql.SQLContext; /**
* 创建dataframe
*/
public class DataFrameCreate {
public static void main (String[] args){
SparkConf conf = new SparkConf()
.setAppName("DataFrameCreate")
.setMaster("local");
JavaSparkContext sc = new JavaSparkContext(conf);
SQLContext sqlContext = new SQLContext(sc);
sqlContext.read().json("hdfs://spark1:9000/test.json").show();
}
} //=======================分隔符====================================== package cn.spark.study.sql; import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.sql.Dataset;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.SQLContext;
/**
* dataframe常用操作
*/
public class DataFrameOperation {
public static void main(String [] args){
// 创建DataFrame
SparkConf conf = new SparkConf()
.setAppName("DataFrameCreate");
JavaSparkContext sc = new JavaSparkContext(conf);
SQLContext sqlContext = new SQLContext(sc); // 创建出来的DataFrame完全可以理解为一张表
Dataset<Row> json = sqlContext.read().json("hdfs://spark1:9000/students.json");
//打印dataframe ;select * from 表名
json.show();
//打印dataframe的元数据信息(schema)
json.printSchema();
//查询某一列的数据
json.select("name").show();
//查询多列 name ,age 并对所有的age列的结果值加1
json.select(json.col("name") , json.col("age").plus()).show();
//对某一列的值进行过滤;eg:只展示age字段值大于18的数据
json.select(json.col("age").gt()).show();
//根据某一列进行分组,并聚合;eg:通过age分组,并求出每组的个数
json.groupBy("age").count().show();
}
}
package cn.spark.study.sql import org.apache.spark.sql.SQLContext
import org.apache.spark.{SparkConf, SparkContext} /**
* 创建 dataframe
*/
object DataFrameCreateScala {
def main(args: Array[String]): Unit = {
val conf = new SparkConf()
.setMaster("dataFramecreate")
.setAppName("local") val sc = new SparkContext(conf)
val sqlContext = new SQLContext(sc) sqlContext.read.json("hdfs://spark1/test.json").show()
}
} ===================================分隔符========================================
package cn.spark.study.sql import org.apache.spark.sql.SQLContext
import org.apache.spark.{SparkConf, SparkContext} /**
* dataframe的常用操作
*/
object DataframeOperation {
def main(args: Array[String]): Unit = {
val conf = new SparkConf()
.setAppName("dataframeOperation")
.setMaster("local")
val sc = new SparkContext(conf)
val sqlContext = new SQLContext(sc)
val df = sqlContext.read.json("hdfs://spark1:9000/text.json") //打印dataframe
df.show()
//打印dataframe的schema
df.printSchema()
//查询某一列的数据
df.select("name").show()
//查询多列数据并进行计算;eg:查询name,age列,并对age列的值+1
df.select(df("name") , df("age")+).show()
//查询某列并对其过滤;eg:查询age列并且值大于18
df.select(df("age").gt()).show()
df.select(df("age")>).show()
//对某一列进行分组,并对分组后的结果进行求个数
df.groupBy(df("age")).count().show()
}
}
小记--------sparksql和DataFrame的小小案例java、scala版本的更多相关文章
- 大数据学习day24-------spark07-----1. sortBy是Transformation算子,为什么会触发Action 2. SparkSQL 3. DataFrame的创建 4. DSL风格API语法 5 两种风格(SQL、DSL)计算workcount案例
1. sortBy是Transformation算子,为什么会触发Action sortBy需要对数据进行全局排序,其需要用到RangePartitioner,而在创建RangePartitioner ...
- SparkSql官方文档中文翻译(java版本)
1 概述(Overview) 2 DataFrames 2.1 入口:SQLContext(Starting Point: SQLContext) 2.2 创建DataFrames(Creating ...
- SparkSQL和DataFrame
SparkSQL和DataFrame SparkSQL简介 Spark SQL是Spark用来处理结构化数据的一个模块,它提供了一个编程抽象叫做DataFrame并且作为分布式SQL查询引擎的作用.它 ...
- 【sparkSQL】DataFrame的常用操作
scala> import org.apache.spark.sql.SparkSession import org.apache.spark.sql.SparkSession scala> ...
- _00017 Kafka的体系结构介绍以及Kafka入门案例(0基础案例+Java API的使用)
博文作者:妳那伊抹微笑 itdog8 地址链接 : http://www.itdog8.com(个人链接) 博客地址:http://blog.csdn.net/u012185296 博文标题:_000 ...
- 35、sparkSQL及DataFrame
一.saprkSQL背景 Spark 1.0版本开始,推出了Spark SQL.其实最早使用的,都是Hadoop自己的Hive查询引擎:但是后来Spark提供了Shark:再后来Shark被淘汰,推出 ...
- sparkSQL获取DataFrame的几种方式
sparkSQL获取DataFrame的几种方式 1. on a specific DataFrame. import org.apache.spark.sql.Column df("col ...
- SparkSQL学习进度9-SQL实战案例
Spark SQL 基本操作 将下列 JSON 格式数据复制到 Linux 系统中,并保存命名为 employee.json. { "id":1 , "name&quo ...
- dataframe 数据统计可视化---spark scala 应用
统计效果: 代码部分: import org.apache.spark.sql.hive.HiveContext import org.apache.spark.{Logging, SparkConf ...
随机推荐
- 转载像元素周期表一样的html5的标签图集
转载请注明出处. HTML5标签集合
- js中的时间显示
var approveTime; approveTime=new Date(da[i].approveTime).toLocaleDateString(); 结果是 xxxx年xx月xx日
- java8 stream流操作的flatMap(流的扁平化)
https://mp.weixin.qq.com/s/7Fqb6tAucrl8UmyiY78AXg https://blog.csdn.net/Mark_Chao/article/details/80 ...
- CPU分支预测器
两篇结合就ok啦 1.https://www.jianshu.com/p/be389eeba589 2.https://blog.csdn.net/edonlii/article/details/87 ...
- Redis | Redis基础都不会,好意思出去面试?
Redis的数据结构 Redis支持多种不同的数据结构,包括5种基础数据结构和几种比较复杂的数据,这些数据结构可以满足不同的应用场景. 五种基础数据结构 String:字符串,是构建其他数据结构的基础 ...
- Android 美团Robust热更新 使用入门
Android热更新方案Robust 相信很多人都认识了解过 热修复.热更新.热补丁(对于这个技术也没有特别标准的一种叫法,下面我统一叫热更新),之后的一年里,各种热更新方案如雨后春笋般出现,比较耳熟 ...
- 指定pip清华源
临时指定: pip install cefpython3 -i https://pypi.tuna.tsinghua.edu.cn/simple 一直使用:pip的配置文件为%HOME%/pip/pi ...
- springboot 整合logback(有全套的日志配置文件)
logback介绍:基于Log4j基础上大量改良,不能单独使用,推荐配合日志框架SLF4J来使用,可以和springboot很好的整合,也是springboot默认推荐的. 1.在resources ...
- React Native 常用第三方组件
React-Native-Elements 一组开发RN的UI工具包(强烈推荐)
- 在CentOS7阿里云服务器部署ThinkPHP5,并配置phpstrom实现同步开发(微信小程序及管理员后端)
小程序和后端同步开发 1.服务器安装tp5框架: 方法很多比如:github.linux命令直接手动下.composer 都可以,方法很多,百度一下,不再累述 2.这时你会发现怎么都访问出现不了这个令 ...