poj1734 Sightseeing trip[最小环]
一个最小环裸题。最小环的两种求法dijkstra和Floyd直接参见这里我就是从这里学的,不想写了。
注意这里最重要的一个点是利用了Floyd的dp过程中路径上点不超过$k$这一性质,来枚举环上最大编号并枚举连边,这样另外枚举的两个点的最短路肯定不会经过和$k$连的边。
坑点:
- 平常inf都开0x3f3f3f3f,这题没注意,在求环那里如果三个inf一加,就爆掉了。。所以要改小一点。这个问题值得重视。
- Floyd正常输出路径应该就更新的时候记录中间点,最后直接递归输出。但是这里因为记录路径中$x$和$y$间的最短路必须是不经过当时的大于等于$k$的点的,所以最小环答案更新即记路径,不能到最后用Floyd转移数组输出路径。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#define dbg(x) cerr << #x << " = " << x <<endl
using namespace std;
typedef long long ll;
typedef double db;
typedef pair<int,int> pii;
template<typename T>inline T _min(T A,T B){return A<B?A:B;}
template<typename T>inline T _max(T A,T B){return A>B?A:B;}
template<typename T>inline char MIN(T&A,T B){return A>B?(A=B,):;}
template<typename T>inline char MAX(T&A,T B){return A<B?(A=B,):;}
template<typename T>inline void _swap(T&A,T&B){A^=B^=A^=B;}
template<typename T>inline T read(T&x){
x=;int f=;char c;while(!isdigit(c=getchar()))if(c=='-')f=;
while(isdigit(c))x=x*+(c&),c=getchar();return f?x=-x:x;
}
const int N=+,INF=0x0f0f0f0f;
int mp[N][N],dis[N][N],g[N][N],h[N][N],n,m,ans=INF,pt1,pt2,pt3;
void print(int i,int j){
if(!h[i][j]){printf("%d ",i);return;}
print(i,h[i][j]);
print(h[i][j],j);
}
void path(int i,int j){
h[i][j]=g[i][j];
if(!g[i][j])return;
path(i,g[i][j]),path(g[i][j],j);
} int main(){//freopen("test.in","r",stdin);//freopen("test.ans","w",stdout);
memset(mp,0x0f,sizeof mp),memset(dis,0x0f,sizeof dis);
read(n),read(m);
for(register int i=,x,y,z;i<=m;++i)read(x),read(y),read(z),dis[x][y]=dis[y][x]=mp[y][x]=mp[x][y]=_min(mp[x][y],z);
for(register int i=;i<=n;++i)dis[i][i]=mp[i][i]=;
for(register int k=;k<=n;++k){
for(register int i=;i<k;++i)
for(register int j=i+;j<k;++j)
if(MIN(ans,mp[i][k]+mp[j][k]+dis[i][j]))
pt1=i,pt2=j,pt3=k,path(i,j);//dbg(i),dbg(j),dbg(k);
for(register int i=;i<=n;++i)
for(register int j=;j<=n;++j)
if(MIN(dis[i][j],dis[i][k]+dis[k][j]))
g[i][j]=k;
}
if(ans<INF)print(pt1,pt2),printf("%d %d\n",pt2,pt3);
else puts("No solution.");
return ;
}
poj1734 Sightseeing trip[最小环]的更多相关文章
- poj1734 Sightseeing trip【最小环】
Sightseeing trip Time Limit: 1000MS Memory Limit: 65536K Total Submissions:8588 Accepted:3224 ...
- POJ1734 Sightseeing trip (Floyd求最小环)
学习了一下用Floyd求最小环,思路还是比较清晰的. 1 #include<iostream> 2 #include<cstdio> 3 #include<cstring ...
- poj1734 Sightseeing trip(Floyd求无向图最小环)
#include <iostream> #include <cstring> #include <cstdio> #include <algorithm> ...
- POJ1734 - Sightseeing trip
DescriptionThere is a travel agency in Adelton town on Zanzibar island. It has decided to offer its ...
- 「POJ1734」Sightseeing trip
「POJ1734」Sightseeing trip 传送门 这题就是要我们求一个最小环并且按顺序输出一组解. 考虑 \(O(n^3)\) 地用 \(\text{Floyd}\) 求最小环: 考虑 \( ...
- 「LOJ#10072」「一本通 3.2 例 1」Sightseeing Trip(无向图最小环问题)(Floyd
题目描述 原题来自:CEOI 1999 给定一张无向图,求图中一个至少包含 333 个点的环,环上的节点不重复,并且环上的边的长度之和最小.该问题称为无向图的最小环问题.在本题中,你需要输出最小环的方 ...
- 【poj1734】Sightseeing trip
Sightseeing trip Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 8520 Accepted: 3200 ...
- URAL 1004 Sightseeing Trip(最小环)
Sightseeing Trip Time limit: 0.5 secondMemory limit: 64 MB There is a travel agency in Adelton town ...
- poj 1734 Sightseeing trip判断最短长度的环
Sightseeing trip Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 5590 Accepted: 2151 ...
随机推荐
- 让样式文件,或js文件的相对路径,变成成绝对路径
添加两行代码即可 <% String path = request.getContextPath(); String basePath = request.getScheme() + " ...
- openresty+lua+kafka方案与Tomcat接口并发度对比分析
1.openresty+lua+kafka 1.1 openresty+lua+kafka方案 之前的项目基于nginx反向代理后转发到Tomcat的API接口进行业务处理,然后将json数据打入ka ...
- Daily Temperatures
Given a list of daily temperatures T, return a list such that, for each day in the input, tells you ...
- [转帖]基于docker 搭建Prometheus+Grafana
基于docker 搭建Prometheus+Grafana https://www.cnblogs.com/xiao987334176/p/9930517.html need good study 一 ...
- MQTT安全篇
物联网的核心是连接万物,通过交换并分析数据使得生活更舒适与便捷.不过,敏感数据泄露或者设备被非法控制可不是闹着玩的.比如前段时间国内某著名家电企业的智能洗衣机,使用了某著名电商基于XMPP协议的物联网 ...
- C++多线程基础学习笔记(九)
一.std::atomic续谈 上一章说到std::atomic是针对一个变量的,这里补充一下针对的变量操作一般是++,+=,--,&=等等运算 .以下这种不可取:a=a+1; 二.std:: ...
- PHP给图片添加文字水印实例
PHP给图片添加文字水印实例,支持中文文字水印,是否覆盖原图,自定义设置水印背景色.文字颜色.字体等. 水印类water.class.php var $Path = "./"; / ...
- T100 —— 凭证打印时排序
capr110_g01,按扣账日期打印排序: 在adzp188——“字段”中加入pmds001的话,产生的代码的变量是:pmds_t_pmds001 :当在“群组”—“印出排序” 再添加pmds001 ...
- 【Havel 定理】Degree Sequence of Graph G
[题目链接] http://acm.hdu.edu.cn/showproblem.php?pid=2454 [别人博客粘贴过来的] 博客地址:https://www.cnblogs.com/debug ...
- 牛客 109B 好位置 (字符串水题)
大意: 给定字符串$s1,s2$, 对于$s1$中所有与$s2$相等的子序列$t$, $t$在$s1$中的下标定义为好位置. 求$s1$是否所有位置都是好位置. 显然$s1$的前缀要与$s2$相等, ...