1.文章原文地址

Going deeper with convolutions

2.文章摘要

我们提出了一种代号为Inception的深度卷积神经网络,它在ILSVRC2014的分类和检测任务上都取得当前最佳成绩。这种结构的主要特点是提高了网络内部计算资源的利用率。这是通过精心的设计实现的,它允许增加网络的深度和宽度,同时保持计算预算不变。为了提高效果,这个网络的架构确定是基于Hebbian原则和多尺度处理的直觉。其中一个典型的实例用于提交到ILSVRC2014上,我们称之为GoogLeNet,它是一个22层的深度网络,该网络的效果通过分类和检测任务来加以评估。

3.网络结构

4.Pytorch实现

 import warnings
from collections import namedtuple
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.model_zoo import load_url as load_state_dict_from_url
from torchsummary import summary __all__ = ['GoogLeNet', 'googlenet'] model_urls = {
# GoogLeNet ported from TensorFlow
'googlenet': 'https://download.pytorch.org/models/googlenet-1378be20.pth',
} _GoogLeNetOuputs = namedtuple('GoogLeNetOuputs', ['logits', 'aux_logits2', 'aux_logits1']) def googlenet(pretrained=False, progress=True, **kwargs):
r"""GoogLeNet (Inception v1) model architecture from
`"Going Deeper with Convolutions" <http://arxiv.org/abs/1409.4842>`_.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
progress (bool): If True, displays a progress bar of the download to stderr
aux_logits (bool): If True, adds two auxiliary branches that can improve training.
Default: *False* when pretrained is True otherwise *True*
transform_input (bool): If True, preprocesses the input according to the method with which it
was trained on ImageNet. Default: *False*
"""
if pretrained:
if 'transform_input' not in kwargs:
kwargs['transform_input'] = True
if 'aux_logits' not in kwargs:
kwargs['aux_logits'] = False
if kwargs['aux_logits']:
warnings.warn('auxiliary heads in the pretrained googlenet model are NOT pretrained, '
'so make sure to train them')
original_aux_logits = kwargs['aux_logits']
kwargs['aux_logits'] = True
kwargs['init_weights'] = False
model = GoogLeNet(**kwargs)
state_dict = load_state_dict_from_url(model_urls['googlenet'],
progress=progress)
model.load_state_dict(state_dict)
if not original_aux_logits:
model.aux_logits = False
del model.aux1, model.aux2
return model return GoogLeNet(**kwargs) class GoogLeNet(nn.Module): def __init__(self, num_classes=1000, aux_logits=True, transform_input=False, init_weights=True):
super(GoogLeNet, self).__init__()
self.aux_logits = aux_logits
self.transform_input = transform_input self.conv1 = BasicConv2d(3, 64, kernel_size=7, stride=2, padding=3)
self.maxpool1 = nn.MaxPool2d(3, stride=2, ceil_mode=True) #向上取整
self.conv2 = BasicConv2d(64, 64, kernel_size=1)
self.conv3 = BasicConv2d(64, 192, kernel_size=3, padding=1)
self.maxpool2 = nn.MaxPool2d(3, stride=2, ceil_mode=True) self.inception3a = Inception(192, 64, 96, 128, 16, 32, 32)
self.inception3b = Inception(256, 128, 128, 192, 32, 96, 64)
self.maxpool3 = nn.MaxPool2d(3, stride=2, ceil_mode=True) self.inception4a = Inception(480, 192, 96, 208, 16, 48, 64)
self.inception4b = Inception(512, 160, 112, 224, 24, 64, 64)
self.inception4c = Inception(512, 128, 128, 256, 24, 64, 64)
self.inception4d = Inception(512, 112, 144, 288, 32, 64, 64)
self.inception4e = Inception(528, 256, 160, 320, 32, 128, 128)
self.maxpool4 = nn.MaxPool2d(2, stride=2, ceil_mode=True) self.inception5a = Inception(832, 256, 160, 320, 32, 128, 128)
self.inception5b = Inception(832, 384, 192, 384, 48, 128, 128) if aux_logits:
self.aux1 = InceptionAux(512, num_classes)
self.aux2 = InceptionAux(528, num_classes) self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.dropout = nn.Dropout(0.2)
self.fc = nn.Linear(1024, num_classes) if init_weights:
self._initialize_weights() def _initialize_weights(self):
for m in self.modules():
if isinstance(m, nn.Conv2d) or isinstance(m, nn.Linear):
import scipy.stats as stats
X = stats.truncnorm(-2, 2, scale=0.01)
values = torch.as_tensor(X.rvs(m.weight.numel()), dtype=m.weight.dtype)
values = values.view(m.weight.size())
with torch.no_grad():
m.weight.copy_(values)
elif isinstance(m, nn.BatchNorm2d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0) def forward(self, x):
if self.transform_input:
x_ch0 = torch.unsqueeze(x[:, 0], 1) * (0.229 / 0.5) + (0.485 - 0.5) / 0.5
x_ch1 = torch.unsqueeze(x[:, 1], 1) * (0.224 / 0.5) + (0.456 - 0.5) / 0.5
x_ch2 = torch.unsqueeze(x[:, 2], 1) * (0.225 / 0.5) + (0.406 - 0.5) / 0.5
x = torch.cat((x_ch0, x_ch1, x_ch2), 1) # N x 3 x 224 x 224
x = self.conv1(x)
# N x 64 x 112 x 112
x = self.maxpool1(x)
# N x 64 x 56 x 56
x = self.conv2(x)
# N x 64 x 56 x 56
x = self.conv3(x)
# N x 192 x 56 x 56
x = self.maxpool2(x) # N x 192 x 28 x 28
x = self.inception3a(x)
# N x 256 x 28 x 28
x = self.inception3b(x)
# N x 480 x 28 x 28
x = self.maxpool3(x)
# N x 480 x 14 x 14
x = self.inception4a(x)
# N x 512 x 14 x 14
if self.training and self.aux_logits:
aux1 = self.aux1(x) x = self.inception4b(x)
# N x 512 x 14 x 14
x = self.inception4c(x)
# N x 512 x 14 x 14
x = self.inception4d(x)
# N x 528 x 14 x 14
if self.training and self.aux_logits:
aux2 = self.aux2(x) x = self.inception4e(x)
# N x 832 x 14 x 14
x = self.maxpool4(x)
# N x 832 x 7 x 7
x = self.inception5a(x)
# N x 832 x 7 x 7
x = self.inception5b(x)
# N x 1024 x 7 x 7 x = self.avgpool(x)
# N x 1024 x 1 x 1
x = x.view(x.size(0), -1)
# N x 1024
x = self.dropout(x)
x = self.fc(x)
# N x 1000 (num_classes)
if self.training and self.aux_logits:
return _GoogLeNetOuputs(x, aux2, aux1)
return x class Inception(nn.Module): #Inception模块 def __init__(self, in_channels, ch1x1, ch3x3red, ch3x3, ch5x5red, ch5x5, pool_proj):
super(Inception, self).__init__() self.branch1 = BasicConv2d(in_channels, ch1x1, kernel_size=1) self.branch2 = nn.Sequential(
BasicConv2d(in_channels, ch3x3red, kernel_size=1),
BasicConv2d(ch3x3red, ch3x3, kernel_size=3, padding=1)
) self.branch3 = nn.Sequential(
BasicConv2d(in_channels, ch5x5red, kernel_size=1),
BasicConv2d(ch5x5red, ch5x5, kernel_size=3, padding=1)
) self.branch4 = nn.Sequential(
nn.MaxPool2d(kernel_size=3, stride=1, padding=1, ceil_mode=True),
BasicConv2d(in_channels, pool_proj, kernel_size=1)
) def forward(self, x):
branch1 = self.branch1(x)
branch2 = self.branch2(x)
branch3 = self.branch3(x)
branch4 = self.branch4(x) outputs = [branch1, branch2, branch3, branch4]
return torch.cat(outputs, 1) class InceptionAux(nn.Module): #辅助分支 def __init__(self, in_channels, num_classes):
super(InceptionAux, self).__init__()
self.conv = BasicConv2d(in_channels, 128, kernel_size=1) self.fc1 = nn.Linear(2048, 1024)
self.fc2 = nn.Linear(1024, num_classes) def forward(self, x):
# aux1: N x 512 x 14 x 14, aux2: N x 528 x 14 x 14
x = F.adaptive_avg_pool2d(x, (4, 4))
# aux1: N x 512 x 4 x 4, aux2: N x 528 x 4 x 4
x = self.conv(x)
# N x 128 x 4 x 4
x = x.view(x.size(0), -1)
# N x 2048
x = F.relu(self.fc1(x), inplace=True)
# N x 1024
x = F.dropout(x, 0.7, training=self.training)
# N x 1024
x = self.fc2(x)
# N x num_classes return x class BasicConv2d(nn.Module): #Conv2d+BN+Relu def __init__(self, in_channels, out_channels, **kwargs):
super(BasicConv2d, self).__init__()
self.conv = nn.Conv2d(in_channels, out_channels, bias=False, **kwargs)
self.bn = nn.BatchNorm2d(out_channels, eps=0.001) def forward(self, x):
x = self.conv(x)
x = self.bn(x)
return F.relu(x, inplace=True) if __name__=="__main__":
model=googlenet()
print(model,(3,224,224))

参考

https://github.com/pytorch/vision/tree/master/torchvision/models

GoogLeNet网络的Pytorch实现的更多相关文章

  1. 跟我学算法-图像识别之图像分类(下)(GoogleNet网络, ResNet残差网络, ResNext网络, CNN设计准则)

    1.GoogleNet 网络: Inception V1 - Inception V2 - Inception V3 - Inception V4 1. Inception v1 split - me ...

  2. 群等变网络的pytorch实现

    CNN对于旋转不具有等变性,对于平移有等变性,data augmentation的提出就是为了解决这个问题,但是data augmentation需要很大的模型容量,更多的迭代次数才能够在训练数据集合 ...

  3. U-Net网络的Pytorch实现

    1.文章原文地址 U-Net: Convolutional Networks for Biomedical Image Segmentation 2.文章摘要 普遍认为成功训练深度神经网络需要大量标注 ...

  4. ResNet网络的Pytorch实现

    1.文章原文地址 Deep Residual Learning for  Image Recognition 2.文章摘要 神经网络的层次越深越难训练.我们提出了一个残差学习框架来简化网络的训练,这些 ...

  5. AlexNet网络的Pytorch实现

    1.文章原文地址 ImageNet Classification with Deep Convolutional Neural Networks 2.文章摘要 我们训练了一个大型的深度卷积神经网络用于 ...

  6. VGG网络的Pytorch实现

    1.文章原文地址 Very Deep Convolutional Networks for Large-Scale Image Recognition 2.文章摘要 在这项工作中,我们研究了在大规模的 ...

  7. googLeNet网络

    1.什么是inception结构 2.什么是Hebbian原理 3.什么是多尺度处理 最近深度学习的发展,大多来源于新的想法,算法以及网络结构的改善,而不是依赖于硬件,新的数据集,更深的网络,并且深度 ...

  8. SegNet网络的Pytorch实现

    1.文章原文地址 SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation 2.文章摘要 语义分 ...

  9. 深度学习——卷积神经网络 的经典网络(LeNet-5、AlexNet、ZFNet、VGG-16、GoogLeNet、ResNet)

    一.CNN卷积神经网络的经典网络综述 下面图片参照博客:http://blog.csdn.net/cyh_24/article/details/51440344 二.LeNet-5网络 输入尺寸:32 ...

随机推荐

  1. Python3之内建模块itertools

    python的内建模块itertools提供了非常有用的用于操作迭代对象的函数 首先,我们看看itertools提供的几个无限迭代器 >>> import itertools > ...

  2. 15点睛Spring4.1-TaskExecutor

    转发:https://www.iteye.com/blog/wiselyman-2212679 15.1 TaskExecutor spring的TaskExecutor为在spring环境下进行并发 ...

  3. React-native/React 公告滚动组件(原生代码)

    编写不易, 希望大家点赞 import React, {PureComponent} from 'react'; import {Animated, Easing, View} from 'react ...

  4. ubuntu18.04下安装gitlab

    1.安装并配置必要的依赖关系 sudo apt-get update sudo apt-get install -y curl openssh-server ca-certificates 接下来,安 ...

  5. poj3660(floyd最短路)

    题目链接:https://vjudge.net/problem/POJ-3660 题意:给出一个有向图,n个结点,每个结点的权值为[1,n]中的一个独特数字,m条边,如果存在边a->b,说明a的 ...

  6. 分布式 ID

    [参考文章] Leaf——美团点评分布式ID生成系统 分布式全局唯一ID生成策略 从一次 Snowflake 异常说起 [雪花算法问题] 微服务架构下 机器码如何生成? 如何处理时钟回调问题?

  7. php中array_replace,array_splice和str_replace三个函数相互比较

    php中有一些功能相似或者是名称相似的函数,比如array_replace,array_splice和str_replace这三个函数,从名称来看前两个操作数组的,后一个操作字符串的. array_r ...

  8. 机器学习-聚类-k-Means算法笔记

    聚类的定义: 聚类就是对大量未知标注的数据集,按数据的内在相似性将数据集划分为多个类别,使类别内的数据相似度较大而类别间的数据相似度较小,它是无监督学习. 聚类的基本思想: 给定一个有N个对象的数据集 ...

  9. 使用脚本将AspNetCore发布到IIS上

    首先你必须要了解的是,没有脚本的情况下,如何把AspNetCore的应用发布到IIS上. 大致分为这些步骤: 安装MS C++ 2015 x86&x64 安装正确版本的.NET Core Ru ...

  10. git出现Invalid path

    今天换了电脑,我直接把整个仓库从电脑A复制到了电脑B,包括仓库下面的 .git 文件夹. 修改代码后我执行了一下 git add . 出现了一个报错 fatal: Invalid path 'D:/S ...