1.文章原文地址

Going deeper with convolutions

2.文章摘要

我们提出了一种代号为Inception的深度卷积神经网络,它在ILSVRC2014的分类和检测任务上都取得当前最佳成绩。这种结构的主要特点是提高了网络内部计算资源的利用率。这是通过精心的设计实现的,它允许增加网络的深度和宽度,同时保持计算预算不变。为了提高效果,这个网络的架构确定是基于Hebbian原则和多尺度处理的直觉。其中一个典型的实例用于提交到ILSVRC2014上,我们称之为GoogLeNet,它是一个22层的深度网络,该网络的效果通过分类和检测任务来加以评估。

3.网络结构

4.Pytorch实现

 import warnings
from collections import namedtuple
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.model_zoo import load_url as load_state_dict_from_url
from torchsummary import summary __all__ = ['GoogLeNet', 'googlenet'] model_urls = {
# GoogLeNet ported from TensorFlow
'googlenet': 'https://download.pytorch.org/models/googlenet-1378be20.pth',
} _GoogLeNetOuputs = namedtuple('GoogLeNetOuputs', ['logits', 'aux_logits2', 'aux_logits1']) def googlenet(pretrained=False, progress=True, **kwargs):
r"""GoogLeNet (Inception v1) model architecture from
`"Going Deeper with Convolutions" <http://arxiv.org/abs/1409.4842>`_.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
progress (bool): If True, displays a progress bar of the download to stderr
aux_logits (bool): If True, adds two auxiliary branches that can improve training.
Default: *False* when pretrained is True otherwise *True*
transform_input (bool): If True, preprocesses the input according to the method with which it
was trained on ImageNet. Default: *False*
"""
if pretrained:
if 'transform_input' not in kwargs:
kwargs['transform_input'] = True
if 'aux_logits' not in kwargs:
kwargs['aux_logits'] = False
if kwargs['aux_logits']:
warnings.warn('auxiliary heads in the pretrained googlenet model are NOT pretrained, '
'so make sure to train them')
original_aux_logits = kwargs['aux_logits']
kwargs['aux_logits'] = True
kwargs['init_weights'] = False
model = GoogLeNet(**kwargs)
state_dict = load_state_dict_from_url(model_urls['googlenet'],
progress=progress)
model.load_state_dict(state_dict)
if not original_aux_logits:
model.aux_logits = False
del model.aux1, model.aux2
return model return GoogLeNet(**kwargs) class GoogLeNet(nn.Module): def __init__(self, num_classes=1000, aux_logits=True, transform_input=False, init_weights=True):
super(GoogLeNet, self).__init__()
self.aux_logits = aux_logits
self.transform_input = transform_input self.conv1 = BasicConv2d(3, 64, kernel_size=7, stride=2, padding=3)
self.maxpool1 = nn.MaxPool2d(3, stride=2, ceil_mode=True) #向上取整
self.conv2 = BasicConv2d(64, 64, kernel_size=1)
self.conv3 = BasicConv2d(64, 192, kernel_size=3, padding=1)
self.maxpool2 = nn.MaxPool2d(3, stride=2, ceil_mode=True) self.inception3a = Inception(192, 64, 96, 128, 16, 32, 32)
self.inception3b = Inception(256, 128, 128, 192, 32, 96, 64)
self.maxpool3 = nn.MaxPool2d(3, stride=2, ceil_mode=True) self.inception4a = Inception(480, 192, 96, 208, 16, 48, 64)
self.inception4b = Inception(512, 160, 112, 224, 24, 64, 64)
self.inception4c = Inception(512, 128, 128, 256, 24, 64, 64)
self.inception4d = Inception(512, 112, 144, 288, 32, 64, 64)
self.inception4e = Inception(528, 256, 160, 320, 32, 128, 128)
self.maxpool4 = nn.MaxPool2d(2, stride=2, ceil_mode=True) self.inception5a = Inception(832, 256, 160, 320, 32, 128, 128)
self.inception5b = Inception(832, 384, 192, 384, 48, 128, 128) if aux_logits:
self.aux1 = InceptionAux(512, num_classes)
self.aux2 = InceptionAux(528, num_classes) self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.dropout = nn.Dropout(0.2)
self.fc = nn.Linear(1024, num_classes) if init_weights:
self._initialize_weights() def _initialize_weights(self):
for m in self.modules():
if isinstance(m, nn.Conv2d) or isinstance(m, nn.Linear):
import scipy.stats as stats
X = stats.truncnorm(-2, 2, scale=0.01)
values = torch.as_tensor(X.rvs(m.weight.numel()), dtype=m.weight.dtype)
values = values.view(m.weight.size())
with torch.no_grad():
m.weight.copy_(values)
elif isinstance(m, nn.BatchNorm2d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0) def forward(self, x):
if self.transform_input:
x_ch0 = torch.unsqueeze(x[:, 0], 1) * (0.229 / 0.5) + (0.485 - 0.5) / 0.5
x_ch1 = torch.unsqueeze(x[:, 1], 1) * (0.224 / 0.5) + (0.456 - 0.5) / 0.5
x_ch2 = torch.unsqueeze(x[:, 2], 1) * (0.225 / 0.5) + (0.406 - 0.5) / 0.5
x = torch.cat((x_ch0, x_ch1, x_ch2), 1) # N x 3 x 224 x 224
x = self.conv1(x)
# N x 64 x 112 x 112
x = self.maxpool1(x)
# N x 64 x 56 x 56
x = self.conv2(x)
# N x 64 x 56 x 56
x = self.conv3(x)
# N x 192 x 56 x 56
x = self.maxpool2(x) # N x 192 x 28 x 28
x = self.inception3a(x)
# N x 256 x 28 x 28
x = self.inception3b(x)
# N x 480 x 28 x 28
x = self.maxpool3(x)
# N x 480 x 14 x 14
x = self.inception4a(x)
# N x 512 x 14 x 14
if self.training and self.aux_logits:
aux1 = self.aux1(x) x = self.inception4b(x)
# N x 512 x 14 x 14
x = self.inception4c(x)
# N x 512 x 14 x 14
x = self.inception4d(x)
# N x 528 x 14 x 14
if self.training and self.aux_logits:
aux2 = self.aux2(x) x = self.inception4e(x)
# N x 832 x 14 x 14
x = self.maxpool4(x)
# N x 832 x 7 x 7
x = self.inception5a(x)
# N x 832 x 7 x 7
x = self.inception5b(x)
# N x 1024 x 7 x 7 x = self.avgpool(x)
# N x 1024 x 1 x 1
x = x.view(x.size(0), -1)
# N x 1024
x = self.dropout(x)
x = self.fc(x)
# N x 1000 (num_classes)
if self.training and self.aux_logits:
return _GoogLeNetOuputs(x, aux2, aux1)
return x class Inception(nn.Module): #Inception模块 def __init__(self, in_channels, ch1x1, ch3x3red, ch3x3, ch5x5red, ch5x5, pool_proj):
super(Inception, self).__init__() self.branch1 = BasicConv2d(in_channels, ch1x1, kernel_size=1) self.branch2 = nn.Sequential(
BasicConv2d(in_channels, ch3x3red, kernel_size=1),
BasicConv2d(ch3x3red, ch3x3, kernel_size=3, padding=1)
) self.branch3 = nn.Sequential(
BasicConv2d(in_channels, ch5x5red, kernel_size=1),
BasicConv2d(ch5x5red, ch5x5, kernel_size=3, padding=1)
) self.branch4 = nn.Sequential(
nn.MaxPool2d(kernel_size=3, stride=1, padding=1, ceil_mode=True),
BasicConv2d(in_channels, pool_proj, kernel_size=1)
) def forward(self, x):
branch1 = self.branch1(x)
branch2 = self.branch2(x)
branch3 = self.branch3(x)
branch4 = self.branch4(x) outputs = [branch1, branch2, branch3, branch4]
return torch.cat(outputs, 1) class InceptionAux(nn.Module): #辅助分支 def __init__(self, in_channels, num_classes):
super(InceptionAux, self).__init__()
self.conv = BasicConv2d(in_channels, 128, kernel_size=1) self.fc1 = nn.Linear(2048, 1024)
self.fc2 = nn.Linear(1024, num_classes) def forward(self, x):
# aux1: N x 512 x 14 x 14, aux2: N x 528 x 14 x 14
x = F.adaptive_avg_pool2d(x, (4, 4))
# aux1: N x 512 x 4 x 4, aux2: N x 528 x 4 x 4
x = self.conv(x)
# N x 128 x 4 x 4
x = x.view(x.size(0), -1)
# N x 2048
x = F.relu(self.fc1(x), inplace=True)
# N x 1024
x = F.dropout(x, 0.7, training=self.training)
# N x 1024
x = self.fc2(x)
# N x num_classes return x class BasicConv2d(nn.Module): #Conv2d+BN+Relu def __init__(self, in_channels, out_channels, **kwargs):
super(BasicConv2d, self).__init__()
self.conv = nn.Conv2d(in_channels, out_channels, bias=False, **kwargs)
self.bn = nn.BatchNorm2d(out_channels, eps=0.001) def forward(self, x):
x = self.conv(x)
x = self.bn(x)
return F.relu(x, inplace=True) if __name__=="__main__":
model=googlenet()
print(model,(3,224,224))

参考

https://github.com/pytorch/vision/tree/master/torchvision/models

GoogLeNet网络的Pytorch实现的更多相关文章

  1. 跟我学算法-图像识别之图像分类(下)(GoogleNet网络, ResNet残差网络, ResNext网络, CNN设计准则)

    1.GoogleNet 网络: Inception V1 - Inception V2 - Inception V3 - Inception V4 1. Inception v1 split - me ...

  2. 群等变网络的pytorch实现

    CNN对于旋转不具有等变性,对于平移有等变性,data augmentation的提出就是为了解决这个问题,但是data augmentation需要很大的模型容量,更多的迭代次数才能够在训练数据集合 ...

  3. U-Net网络的Pytorch实现

    1.文章原文地址 U-Net: Convolutional Networks for Biomedical Image Segmentation 2.文章摘要 普遍认为成功训练深度神经网络需要大量标注 ...

  4. ResNet网络的Pytorch实现

    1.文章原文地址 Deep Residual Learning for  Image Recognition 2.文章摘要 神经网络的层次越深越难训练.我们提出了一个残差学习框架来简化网络的训练,这些 ...

  5. AlexNet网络的Pytorch实现

    1.文章原文地址 ImageNet Classification with Deep Convolutional Neural Networks 2.文章摘要 我们训练了一个大型的深度卷积神经网络用于 ...

  6. VGG网络的Pytorch实现

    1.文章原文地址 Very Deep Convolutional Networks for Large-Scale Image Recognition 2.文章摘要 在这项工作中,我们研究了在大规模的 ...

  7. googLeNet网络

    1.什么是inception结构 2.什么是Hebbian原理 3.什么是多尺度处理 最近深度学习的发展,大多来源于新的想法,算法以及网络结构的改善,而不是依赖于硬件,新的数据集,更深的网络,并且深度 ...

  8. SegNet网络的Pytorch实现

    1.文章原文地址 SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation 2.文章摘要 语义分 ...

  9. 深度学习——卷积神经网络 的经典网络(LeNet-5、AlexNet、ZFNet、VGG-16、GoogLeNet、ResNet)

    一.CNN卷积神经网络的经典网络综述 下面图片参照博客:http://blog.csdn.net/cyh_24/article/details/51440344 二.LeNet-5网络 输入尺寸:32 ...

随机推荐

  1. iOS-UIDocumentInteractionController打开和预览文档

    iOS提供了使用其他app预览文件的支持,这就是Document Interaction Controller.此外,iOS也支持文件关联,允许其他程序调用你的app打开某种文件.而且,从4.2开始, ...

  2. swift 导入第三方库

    现在的项目也是做了几个,每个都会导入几个优秀的第三方…… 这里写下导入的步骤,方便查询:::: 1.手动导入 首先要知道,是需要文件,还是框架 比如 Alamofire.SnapKit,都需要导入框架 ...

  3. Nginx虚拟目录(alias)和根目录(root)

    功能要求: 假设nginx配置的域名是www.kazihuo.com,现有静态资源/home/www/oye目录需要通过nginx访问. 功能实现: 前提要求: 1.在nginx.conf中到处第二行 ...

  4. QT qml---- loader使用方法

    "简洁是智慧的灵魂,冗长是肤浅的藻饰"------------------<哈姆莱特>莎士比亚 Import Statement: import QtQuick 2.5 ...

  5. [bzoj3420]Poi2013 Triumphal arch_树形dp_二分

    Triumphal arch 题目链接:https://lydsy.com/JudgeOnline/problem.php?id=3420 数据范围:略. 题解: 首先,发现$ k $具有单调性,我们 ...

  6. Django源码分析之启动wsgi发生的事

    前言 ​ 好多人对技术的理解都停留在懂得使用即可,因而只会用而不会灵活用,俗话说好奇害死猫,不然我也不会在凌晨1.48的时候决定写这篇博客,好吧不啰嗦了 ​ 继续上一篇文章,后我有个问题(上文:&qu ...

  7. php实现映射

    目录 映射 实现 链表实现: 二叉树实现 复杂度分析 映射 映射,或者射影,在数学及相关的领域经常等同于函数.基于此,部分映射就相当于部分函数,而完全映射相当于完全函数. 映射(Map)是用于存取键值 ...

  8. python第三天---列表的魔法

    # list 列表 # 中括号括起来,逗号分隔每个元素, # 列表中可以是数字字符串.列表等都可以放进去 list1 = [123, "book", "手动", ...

  9. Android--自定义Dialog style

    <style name="dialog" parent="@android:style/Theme.Dialog"> <item name=& ...

  10. QuartzNet 任务管理系统

    最近有面试!都有问道Quartz方面的问题,之前的项目有使用过,也知道怎么用,但面试时要说出它的原理,一时半会还真说不来!查阅了一些资料先记录下来吧 Quartz.NET官网地址:https://ww ...