divisors 数学
divisors 数学
给定\(m\)个不同的正整数\(a_1, a_2,\cdots, a_m\),请对\(0\)到\(m\)每一个\(k\)计算,在区间\([1, n]\)里有多少正整数是\(a\)中恰好\(k\)个数的约数。
极度考验语文能力的题面。
套路一般分解质因数,但是我们发现分解质因数之后统计会很麻烦,又发现\(m\),\(a_i\)的所有约数个数又很小,所以我们索性将\(m\)个数分别都预处理出所有可能的约数分解形式丢进栈,之后直接sort栈,线性统计答案即可。
另外,我们发现\([1,n]\)每一个数都只能被计算一次,所以在区间\([1, n]\)里有多少正整数是\(a\)中恰好0个数的约数的个数即为\(n-sum\)
#include <cstdio>
#include <iostream>
#include <cmath>
#include <stack>
#include <algorithm>
int s[10000010],s_top;
int res[202];
int n,m,a[202];
int main(){
scanf("%d %d", &n, &m);
for(int i=1;i<=m;++i) scanf("%d", &a[i]);
for(int i=1;i<=m;++i){
int tmp=(int)sqrt(a[i]);
for(int j=1;j<=tmp;++j)
if(a[i]%j==0) s[++s_top]=j,s[++s_top]=a[i]/j;
if(tmp*tmp==a[i]) --s_top;
}
std::sort(s+1, s+1+s_top);
int cur_cnt=1;
for(int i=2;i<=s_top;++i){
if(s[i]>n) break;
if(s[i-1]==s[i])
++cur_cnt;
else{
++res[cur_cnt];
cur_cnt=1;
}
}
++res[cur_cnt];
int sum=0;
for(int i=1;i<=m;++i) sum+=res[i];
printf("%d\n", n-sum);
for(int i=1;i<=m;++i) printf("%d\n", res[i]);
return 0;
}
divisors 数学的更多相关文章
- D. Almost All Divisors(数学分解因子)
其实这题并不难啊,但是分解因子的细节一定要小心. \(比如样例48,2是因子说明24也是因子,也就是说假如x存在\) \(那么x一定是因子中的最小数乘上最大数\) \(那我们现在去验证x是否存在,先拿 ...
- Educational Codeforces Round 89 (Rated for Div. 2) D. Two Divisors (数学)
题意:有\(n\)组数,对于每组数,问是否能找到两个因子\(d_{1},d{2}\),使得\(gcd(d_{1}+d_{2},a_{i}=1)\),如果有,输出它们,否则输出\(-1\). 题解:对于 ...
- Divisors of Two Integers CodeForces - 1108B (数学+思维)
Recently you have received two positive integer numbers xx and yy. You forgot them, but you remember ...
- A - Divisors POJ - 2992 (组合数C的因子数)数学—大数
题意:就是求组合数C的因子的个数! 先说一下自己THL的算法,先把组合数求出来,然后将这个大数分解,得到各个素数的个数,再利用公式!用最快的大数分解算法 分析一下时间复杂度! n1/4但是分析一下 ...
- 【数学】【CF27E】 Number With The Given Amount Of Divisors
传送门 Description 给定一个正整数\(n\),输出最小的整数,满足这个整数有n个因子 Input 一行一个整数\(n\) Output 一行一个整数,代表答案. Hint \(1~\leq ...
- [CSP-S模拟测试]:Divisors(数学)
题目描述 给定$m$个不同的正整数$a_1,a_2,...,a_m$,请对$0$到$m$每一个$k$计算,在区间$[1,n]$里有多少正整数是$a$中恰好$k$个数的约数. 输入格式 第一行包含两个正 ...
- ACM数学
1.burnside定理,polya计数法 这个专题我单独写了个小结,大家可以简单参考一下:polya 计数法,burnside定理小结 2.置换,置换的运算 置换的概念还是比较好理解的,< ...
- 【LeetCode】数学(共106题)
[2]Add Two Numbers (2018年12月23日,review) 链表的高精度加法. 题解:链表专题:https://www.cnblogs.com/zhangwanying/p/979 ...
- 数学思想:为何我们把 x²读作x平方
要弄清楚这个问题,我们得先认识一个人.古希腊大数学家 欧多克索斯,其在整个古代仅次于阿基米德,是一位天文学家.医生.几何学家.立法家和地理学家. 为何我们把 x²读作x平方呢? 古希腊时代,越来越多的 ...
随机推荐
- SAS学习笔记49 生成前20个黄金分割数列到数据集
黄金分割数列即斐波那契数列,该数列中后一个数与前一个数的比例越往后越接近于黄金比例(1+√5)/2 ,此数列分布表现出极致的均衡与和谐之美
- 在论坛中出现的比较难的sql问题:12(递归问题2 拆分字符串)
原文:在论坛中出现的比较难的sql问题:12(递归问题2 拆分字符串) 最近,在论坛中,遇到了不少比较难的sql问题,虽然自己都能解决,但发现过几天后,就记不起来了,也忘记解决的方法了. 所以,觉得有 ...
- SVN_03绿色版
1.首先备份当前安装visualSVN文件的bin目录,万一出错还能反个水.一般默认安装路径是C:\Program Files(x86)VisualSVN\bin 2.然后运行ildasm,Windo ...
- 高德地图模糊搜索地址(elementUI)
首先引入AMap: 1.在index.html引入AMap <script type="text/javascript" src="http://webapi.am ...
- CSS和LESS
1.CSS 层叠样式表(英文全称:Cascading Style Sheets)是一种用来表现HTML(标准通用标记语言的一个应用)或XML(标准通用标记语言的一个子集)等文件样式的计算机语言.CSS ...
- Java 之 文件过滤器
在学习过滤器之前,先来做一个案例. 题目:文件搜索,搜索 D:\java 目录中 .java 文件. 分析: 1. 目录搜索,无法判断多少级目录,使用递归,遍历所有目录 2. 遍历目录时,获取的子 ...
- Java软件编码习惯
1.再删除某个类时候,一定别忘记把对应的import也删除掉: 可以手动删除,也可以 Ctrl+Shift+O快捷键自动删除和导入.
- rhel7下安装EPEL源
1.rhel7安装aliyun下的epel源 wget -O /etc/yum.repos.d/epel.repo http://mirrors.aliyun.com/repo/epel-7.repo
- Spring Cloud 之 服务网关
在微服务架构体系中,使用API 服务网关后的系统架构图如下: API服务网关的主要作用如下: 服务访问的统一入口 服务访问的负载均衡功能 服务访问的路由功能 在SpringCloud中,基于Netfl ...
- python算法与数据结构-常用查找算法一(37)
一.什么是查找 查找(Searching)就是根据给定的某个值,在查找表中确定一个其关键字等于给定值的数据元素(或记录). 查找表(Search Table):由同一类型的数据元素(或记录)构成的集合 ...