【线性代数】2-1:解方程组(Ax=b)
title: 【线性代数】2-1:解方程组(Ax=b)
toc: true
categories:
- Mathematic
- Linear Algebra
date: 2017-08-31 15:08:37
keywords: - row picture
- column Picture
- system of equations
Abstract: 通过不同的角度解方程组Ax=bAx=bAx=b
Keywords: row picture,column Picture,system of equations
开篇废话
今天不想说啥废话了,不论外接环境是什么样子的,别人强迫你做什么你认为很没有价值的事,千万稳住,做自己认为对的,有价值的就可以,追逐梦想的道路上无论是否有人陪伴都是充实的,失去方向的剧中狂欢没有任何价值。
解方程组
x−2y=13x+2y=11
x-2y=1 \\
3x+2y=11
x−2y=13x+2y=11
同志们,来解方程组,这是小学四五年级的数学题,也是线性代数的核心问题,解方程组,没错2x2的方程组没啥好说的,咔咔咔,就算粗来了,但是200x200的规模就有点大了,所以线性代数知识就有用了。
Row Picture
本文为节选,完整内容地址:https://www.face2ai.com/Math-Linear-Algebra-Chapter-2-1转载请标明出处
【线性代数】2-1:解方程组(Ax=b)的更多相关文章
- 用列主元消去法分别解方程组Ax=b,用MATLAB程序实现(最有效版)
数值分析里面经常会涉及到用MATLAB程序实现用列主元消去法分别解方程组Ax=b 具体的方法和代码以如下方程(3x3矩阵)为例进行说明: 用列主元消去法分别解方程组Ax=b,用MATLAB程序实现: ...
- matlab 解方程组
1.解方程 最近有多人问如何用matlab解方程组的问题,其实在matlab中解方程组还是很方便的,例如,对于代数方程组Ax=b(A为系数矩阵,非奇异)的求解,MATLAB中有两种方法:(1)x=in ...
- 解同余式ax ≡ c(mod m)
将式子变形为 ax-c=my 可以看出原式有解当且仅当线性方程ax-my=c有解 设g = gcd(a, m) 则所有形如ax-my的数都是g的倍数 因此如果g不整除c则原方程无解. 下面假设g整除c ...
- exgcd 解同余方程ax=b(%n)
ax=n(%b) -> ax+by=n 方程有解当且仅当 gcd(a,b) | n ( n是gcd(a,b)的倍数 ) exgcd解得 a*x0+b*y0=gcd(a,b) 记k=n/gc ...
- 解不定方程ax+by=m的最小解
给出方程a*x+b*y=c,其中所有数均是整数,且a,b,c是已知数,求满足那个等式的x,y值?这个方程可能有解也可能没解也可能有无穷多个解(注意:这里说的解都是整数解)? 既然如此,那我们就得找出有 ...
- hdu4975 网络流解方程组(网络流+dfs判环或矩阵DP)
http://acm.hdu.edu.cn/showproblem.php?pid=4975 A simple Gaussian elimination problem. Time Limit: 20 ...
- HDU 4579 Random Walk (解方程组)
Random Walk Time Limit: 5000/2000 MS (Java/Others) Memory Limit: 65535/65536 K (Java/Others)Total ...
- poj1222(枚举or高斯消元解mod2方程组)
题目链接: http://poj.org/problem?id=1222 题意: 有一个 5 * 6 的初始矩阵, 1 表示一个亮灯泡, 0 表示一个不亮的灯泡. 对 (i, j) 位置进行一次操作则 ...
- SVD分解 解齐次线性方程组
SVD分解 只有非方阵才能进行奇异值分解 SVD分解:把矩阵分解为 特征向量矩阵+缩放矩阵+旋转矩阵 定义 设\(A∈R^{m×n}\),且$ rank(A) = r (r > 0) $,则矩阵 ...
随机推荐
- ios 输入框失去焦点,位置回调方法
微信网页开发,ios 在input,textarea 失去焦点后,页面无法回调. 以下方法可解决: $("input,textarea").on("blur", ...
- Python之random.seed()用法
import random # 随机数不一样 random.seed() print('随机数1:',random.random()) random.seed() print('随机数2:',rand ...
- 为什么我们需要Pod?(容器设计模式sidecar)
Pod,是 Kubernetes 项目中最小的 API 对象 容器的本质是进程,就是未来云计算系统中的进程:容器镜像就是这个系统里的".exe"安装包 Kubernetes 就是操 ...
- springboot内置tomcat配置虚拟路径
在Springboot中默认的静态资源路径有:classpath:/METAINF/resources/,classpath:/resources/,classpath:/static/,classp ...
- C#中DateTime.Ticks
DateTime.Ticks:表示0001 年 1 月 1 日午夜 12:00:00 以来所经历的 100 纳秒数,即Ticks的属性为100纳秒(1Ticks = 0.0001毫秒). Unix时间 ...
- 微信公众号开发(三)—— access_token的管理
上一篇 微信公众号开发(二)—— 微信公众平台接入 让我们的本地工程顺利的接入到微信公众号系统, 那么接下啦我们介绍一个很重要的感念——acess_token (access_token是公众号的全局 ...
- Delphi 构造和析构
- seaborn图形
kdeplot(核密度估计图) 核密度估计(kernel density estimation)是在概率论中用来估计未知的密度函数,属于非参数检验方法之一.通过核密度估计图可以比较直观的看出数据样本本 ...
- web开发:javascript基础
一.js引入 二.变量的定义 三.三种弹出框 四.调试方式 五.数据类型 六.数据类型转换 七.运算符 八.分支机构 九.循环结构 十.异常处理 十一.函数 一.js引入 - ES: ECMAScri ...
- day_03比特币转账的运行原理
在2008年全球经济危机中,中本聪想如果能构建一个没有中心机构的货币发行体系,货币就不会被无限发行,大家都很公平公正,于是中本聪构建了比特币这样一个体系: 一.非中心化下的比特币发行机制 比特币的发行 ...