POJ 1330 Nearest Common Ancestors
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 24209   Accepted: 12604

Description

A rooted tree is a well-known data structure in computer science and engineering. An example is shown below:

 
In the figure, each node is labeled with an integer from {1, 2,...,16}. Node 8 is the root of the tree. Node x is an ancestor of node y if node x is in the path between the root and node y. For example, node 4 is an ancestor of node 16. Node 10 is also an ancestor of node 16. As a matter of fact, nodes 8, 4, 10, and 16 are the ancestors of node 16. Remember that a node is an ancestor of itself. Nodes 8, 4, 6, and 7 are the ancestors of node 7. A node x is called a common ancestor of two different nodes y and z if node x is an ancestor of node y and an ancestor of node z. Thus, nodes 8 and 4 are the common ancestors of nodes 16 and 7. A node x is called the nearest common ancestor of nodes y and z if x is a common ancestor of y and z and nearest to y and z among their common ancestors. Hence, the nearest common ancestor of nodes 16 and 7 is node 4. Node 4 is nearer to nodes 16 and 7 than node 8 is.

For other examples, the nearest common ancestor of nodes 2 and 3 is node 10, the nearest common ancestor of nodes 6 and 13 is node 8, and the nearest common ancestor of nodes 4 and 12 is node 4. In the last example, if y is an ancestor of z, then the nearest common ancestor of y and z is y.

Write a program that finds the nearest common ancestor of two distinct nodes in a tree.

Input

The input consists of T test cases. The number of test cases (T) is given in the first line of the input file. Each test case starts with a line containing an integer N , the number of nodes in a tree, 2<=N<=10,000. The nodes are labeled with integers 1, 2,..., N. Each of the next N -1 lines contains a pair of integers that represent an edge --the first integer is the parent node of the second integer. Note that a tree with N nodes has exactly N - 1 edges. The last line of each test case contains two distinct integers whose nearest common ancestor is to be computed.

Output

Print exactly one line for each test case. The line should contain the integer that is the nearest common ancestor.

Sample Input

2
16
1 14
8 5
10 16
5 9
4 6
8 4
4 10
1 13
6 15
10 11
6 7
10 2
16 3
8 1
16 12
16 7
5
2 3
3 4
3 1
1 5
3 5

Sample Output

4
3
 #define N 10100
#include<iostream>
using namespace std;
#include<cstdio>
#include<cstring>
struct Edge{
int v,last;
}edge[N*];
bool visit[N],root[N];
int father[N],ance[N];
int T,n,head[N];
int x,y;
void add_edge(int u,int v,int k)
{
edge[k].v=v;
edge[k].last=head[u];
head[u]=k;
}
void input()
{
memset(root,false,sizeof(root));
memset(edge,,sizeof(edge));
memset(head,,sizeof(head));/*注意多组数据之间的衔接,把数据都清空了*/
scanf("%d",&n);
for(int i=;i<n;++i)
{
int u,v;
scanf("%d%d",&u,&v);
add_edge(u,v,i);
father[i]=i;
ance[i]=;
root[v]=true;
visit[i]=false;
}
scanf("%d%d",&x,&y);
father[n]=n;
ance[n]=;
visit[n]=false; }
int find(int k)
{
return (father[k]==k)?father[k]:father[k]=find(father[k]);
}
void tarjan(int k)
{
ance[k]=k;
for(int l=head[k];l;l=edge[l].last)
{
tarjan(edge[l].v);
father[edge[l].v]=k;
ance[edge[l].v]=k;
}
visit[k]=true;
if(k==x&&visit[y])
{
printf("%d\n",ance[find(y)]);
}
if(k==y&&visit[x])
{
printf("%d\n",ance[find(x)]);
}
}
int main()
{
scanf("%d",&T);
while(T--)
{
input();
for(int i=;i<=n;++i)
if(!root[i])
{
tarjan(i);
break;
}
}
return ;
}

LCA POJ 1330 Nearest Common Ancestors的更多相关文章

  1. POJ - 1330 Nearest Common Ancestors(基础LCA)

    POJ - 1330 Nearest Common Ancestors Time Limit: 1000MS   Memory Limit: 10000KB   64bit IO Format: %l ...

  2. POJ 1330 Nearest Common Ancestors / UVALive 2525 Nearest Common Ancestors (最近公共祖先LCA)

    POJ 1330 Nearest Common Ancestors / UVALive 2525 Nearest Common Ancestors (最近公共祖先LCA) Description A ...

  3. POJ.1330 Nearest Common Ancestors (LCA 倍增)

    POJ.1330 Nearest Common Ancestors (LCA 倍增) 题意分析 给出一棵树,树上有n个点(n-1)条边,n-1个父子的边的关系a-b.接下来给出xy,求出xy的lca节 ...

  4. POJ 1330 Nearest Common Ancestors(lca)

    POJ 1330 Nearest Common Ancestors A rooted tree is a well-known data structure in computer science a ...

  5. POJ 1330 Nearest Common Ancestors 倍增算法的LCA

    POJ 1330 Nearest Common Ancestors 题意:最近公共祖先的裸题 思路:LCA和ST我们已经很熟悉了,但是这里的f[i][j]却有相似却又不同的含义.f[i][j]表示i节 ...

  6. POJ 1330 Nearest Common Ancestors 【LCA模板题】

    任意门:http://poj.org/problem?id=1330 Nearest Common Ancestors Time Limit: 1000MS   Memory Limit: 10000 ...

  7. POJ 1330 Nearest Common Ancestors (LCA,dfs+ST在线算法)

    Nearest Common Ancestors Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 14902   Accept ...

  8. POJ 1330 Nearest Common Ancestors(Targin求LCA)

    传送门 Nearest Common Ancestors Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 26612   Ac ...

  9. POJ 1330 Nearest Common Ancestors LCA题解

    Nearest Common Ancestors Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 19728   Accept ...

随机推荐

  1. Warning: Permanently added the RSA host key for IP address '192.30.253.113' to the list of known hosts. Permission denied (publickey). fatal: Could not read from remote repository. Please make sure y

    这个应该是很多github新手经常出错的问题,这个就是没有在你github上添加一个公钥. 下面就直接说步骤: 1 可以用 ssh -T git@github.com去测试一下 图上可以明显看出缺少了 ...

  2. 百度地图js lite api 支持点聚合

    百度地图lite api 是专门为h5 绘制海量点设计的,但是偏偏忽略掉了点聚合的需求,所以需要自己动手,做一次二次改造. 我们知道点聚合需要引入开源库: MarkerClusterer:  http ...

  3. sshd_config OpenSSH SSH 进程配置文件配置说明

    名称 sshd_config – OpenSSH SSH 服务器守护进程配置文件 大纲 /etc/ssh/sshd_config 描述sshd 默认从 /etc/ssh/sshd_config 文件( ...

  4. Django-manage.py

    一.manage.py命令选项 manage.py是每个Django项目中自动生成的一个用于管理项目的脚本文件,需要通过python命令执行.manage.py接受的是Django提供的内置命令. 内 ...

  5. Native Apps、Web Apps

    Native Apps 指的是远程程序,一般依托于操作系统,有很强的交互,是一个完整的App,可拓展性强,需要用户下载安装使用 优点: 打造完美的用户体验 性能稳定 操作速度快,上手流畅 访问本地资源 ...

  6. 洛谷 P2871 [USACO07DEC]手链Charm Bracelet 题解

    题目传送门 这道题明显就是个01背包.所以直接套模板就好啦. #include<bits/stdc++.h> #define MAXN 30000 using namespace std; ...

  7. 关于IPMI的几个问题

    https://blog.csdn.net/lanyang123456/article/details/51712878

  8. day3 文件操作

    文件操作是在内存中进行操作的,因为文件是存储在内存中的. open函数,该函数用于文件处理: 操作文件时,一般需要经历如下步骤: (1)打开文件: (2)操作文件 一.打开文件 文件句柄 = open ...

  9. DB First 中对Repository 层封装的几点小记

    在数据库表创建完成的情况下,使用DB First 进行开发,封装底层会遇到一些小问题,在此记录一下,供以后参考. 主要解决的问题有: 1.EF上下文管理 2.BaseRepository的封装 3.E ...

  10. 浅谈BUFF设计

    Buff在游戏中无处不在,比如WOW.DOTA.LOL等等,这些精心设计的BUFF,让我们击节赞叹,沉迷其中. 问:BUFF的本质是什么? BUFF 是对一项或多项数据进行瞬间或持续作用的集合.(持续 ...