LOJ2503 NOIP2014 解方程 【HASH】
LOJ2503 NOIP2014 解方程
题目大意就是给你一个方程,让你求[1,m]中的解,其中系数非常大
看到是提高T3还是解方程就以为是神仙数学题
后来研究了一下高精之类的算法发现过不了多少分
后面佬说这题是hash
然后就雾
考虑对于一个式子f(x)=0肯定会满足f(x)%prime=0
所以我们直接多取几个相近的prime,减小冲突几率
然后我们只需要预处理每个系数对于每个prime的模数,然后判断一下就可以了
但是这样会TLE
又可以发现对于任意的f(x)%prime=0,等价于f(x%prime)%prime=0
所以对于每个质数直接枚举比它小的数进行检查就好了
然后就比较和谐了
中间出了一些比较玄学的错误导致交了很多个70分
不过问题不大
#include<bits/stdc++.h>
using namespace std;
#define N 110
#define M 1000010
int prime[]={,,,,};
int pa[N][],n,m;
char c[M];
bool vis[M],ak[M][];
int check(int x,int id){
int pic=;
for(int i=n;i>=;i--)
pic=(pic*x%prime[id]+pa[i][id])%prime[id];
return pic;
}
int main(){
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++){
scanf("%s",c);
int len=strlen(c),j=;
if(c[]=='-')j++;
for(;j<len;j++)for(int k=;k<;k++)
pa[i][k]=(pa[i][k]*+c[j]-'')%prime[k];
if(c[]=='-')for(int k=;k<;k++)pa[i][k]*=-;
}
int cnt=;
for(int j=;j<;j++)
for(int i=;i<prime[j];i++)
if(check(i,j)!=)ak[i][j]=;
for(int i=;i<=m;i++){
bool can=;
for(int j=;j<;j++)if(ak[i%prime[j]][j]){can=;break;}
if(can)vis[i]=,cnt++;
}
printf("%d\n",cnt);
for(int i=;i<=m;i++)if(vis[i])printf("%d\n",i);
return ;
}
LOJ2503 NOIP2014 解方程 【HASH】的更多相关文章
- 【BZOJ】3751: [NOIP2014]解方程【秦九韶公式】【大整数取模技巧】
3751: [NOIP2014]解方程 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 4856 Solved: 983[Submit][Status ...
- BZOJ 3751: [NOIP2014]解方程 数学
3751: [NOIP2014]解方程 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=3751 Description 已知多项式方程: ...
- bzoj 3751: [NOIP2014]解方程 同余系枚举
3.解方程(equation.cpp/c/pas)[问题描述]已知多项式方程:a ! + a ! x + a ! x ! + ⋯ + a ! x ! = 0求这个方程在[1, m]内的整数解(n 和 ...
- [NOIP2014]解方程
3732 解方程 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 钻石 Diamond 题解 题目描述 Description 输入描述 Input Descrip ...
- BZOJ3751 NOIP2014 解方程(Hash)
题目链接 BZOJ3751 这道题的关键就是选取取模的质数. 我选了4个大概几万的质数,这样刚好不会T 然后统计答案的时候如果对于当前质数,产生了一个解. 那么对于那些对这个质数取模结果为这个数的数 ...
- [BZOJ3751][NOIP2014] 解方程
Description 已知多项式方程:a0+a1*x+a2*x^2+...+an*x^n=0 求这个方程在[1,m]内的整数解(n和m均为正整数). Input 第一行包含2个整数n.m,每两个 ...
- NOIP 2014 D2T3 解方程 Hash大法好
题目大意:给定高次方程an*x^n+...+a1*x^1+a0*x^0=0 求[1,m]区间内有多少个整数根 ai<=10^10000.m<=100W 懒得高精,考场上写的long dou ...
- NOIP2014解方程
题目:求一个n次整系数方程在1-m内的整数解 n<=100 系数<=10000位 m<=100W 题解:最暴力的想法是枚举x,带入求值看是否为0. 这样涉及到高精度乘高精度,高精度 ...
- [BZOJ3751] [NOIP2014] 解方程 (数学)
Description 已知多项式方程:$a_0+a_1*x+a_2*x^2+...+a_n*x^n=0$ 求这个方程在[1,m]内的整数解(n和m均为正整数). Input 第一行包含2个整数n.m ...
随机推荐
- POJ 2299 Ultra-QuickSort(树状数组+离散化)
http://poj.org/problem?id=2299 题意:给出一组数,求逆序对. 思路: 这道题可以用树状数组解决,但是在此之前,需要对数据进行一下预处理. 这道题目的数据可以大到999,9 ...
- JavaScript高级程序设计-读书笔记(3)
第8章 BOM 1.window对象 (1)全局作用域 BOM的核心对象是window,它表示浏览器的一个实例.在浏览器中,window对象既是通过JavaScript访问浏览器窗口的一个接口,又是E ...
- How to implement multiple constructor with different parameters in Scala
Using scala is just another road, and it just like we fall in love again, but there is some pain you ...
- C和C#两种方式实现邮件的简单发送
内容为通过两种方式发送邮件--1.C语言发送邮件 2.C#发送邮件 一,C语言进行邮件的发送 C语言发送邮件的步骤的简单解析: 1.创建TCP连接 socket() 2.连接到邮箱服务器 ...
- 【Python】模块学习之使用paramiko连接Linux,远程执行命令,上传下载、文件
本文主要介绍paramiko远程执行linux命令,及在服务器上进行文件的上传.下载 paramiko是用python语言写的一个模块,遵循SSH2协议,支持以加密和认证的方式,进行远程服务器的连接. ...
- 一、nginx 安装
添加官方 yum 源 vim /etc/yum.repos.d/nginx.rep 输入以下内容(OS为你的系统,OSRELEASE 系统版本) [nginx] name=nginx repo bas ...
- js打乱数组的实战应用
文章首发于: https://www.xiabingbao.com/post/javascript/js-random-array.html 在js中,能把数组随机打乱的方法有很多,每个方法都有自己的 ...
- FontAwesome::Sass(5.x版)使用帮助。
FontAwesome::Sass(5.x版) https://fontawesome.com/icons?d=gallery&m=free 只能使用免费的. 在app/assets/styl ...
- jdk动态代理使用及原理
jdk动态代理的使用 1.创建实现InvocationHandler接口的类,实现invoke(Object proxy, Method method, Object[] args)接口,其中invo ...
- LeetCode 380. Insert Delete GetRandom O(1)
380. Insert Delete GetRandom O(1) Add to List Description Submission Solutions Total Accepted: 21771 ...