LOJ2503 NOIP2014 解方程 【HASH】
LOJ2503 NOIP2014 解方程
题目大意就是给你一个方程,让你求[1,m]中的解,其中系数非常大
看到是提高T3还是解方程就以为是神仙数学题
后来研究了一下高精之类的算法发现过不了多少分
后面佬说这题是hash
然后就雾
考虑对于一个式子f(x)=0肯定会满足f(x)%prime=0
所以我们直接多取几个相近的prime,减小冲突几率
然后我们只需要预处理每个系数对于每个prime的模数,然后判断一下就可以了
但是这样会TLE
又可以发现对于任意的f(x)%prime=0,等价于f(x%prime)%prime=0
所以对于每个质数直接枚举比它小的数进行检查就好了
然后就比较和谐了
中间出了一些比较玄学的错误导致交了很多个70分
不过问题不大
#include<bits/stdc++.h>
using namespace std;
#define N 110
#define M 1000010
int prime[]={,,,,};
int pa[N][],n,m;
char c[M];
bool vis[M],ak[M][];
int check(int x,int id){
int pic=;
for(int i=n;i>=;i--)
pic=(pic*x%prime[id]+pa[i][id])%prime[id];
return pic;
}
int main(){
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++){
scanf("%s",c);
int len=strlen(c),j=;
if(c[]=='-')j++;
for(;j<len;j++)for(int k=;k<;k++)
pa[i][k]=(pa[i][k]*+c[j]-'')%prime[k];
if(c[]=='-')for(int k=;k<;k++)pa[i][k]*=-;
}
int cnt=;
for(int j=;j<;j++)
for(int i=;i<prime[j];i++)
if(check(i,j)!=)ak[i][j]=;
for(int i=;i<=m;i++){
bool can=;
for(int j=;j<;j++)if(ak[i%prime[j]][j]){can=;break;}
if(can)vis[i]=,cnt++;
}
printf("%d\n",cnt);
for(int i=;i<=m;i++)if(vis[i])printf("%d\n",i);
return ;
}
LOJ2503 NOIP2014 解方程 【HASH】的更多相关文章
- 【BZOJ】3751: [NOIP2014]解方程【秦九韶公式】【大整数取模技巧】
3751: [NOIP2014]解方程 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 4856 Solved: 983[Submit][Status ...
- BZOJ 3751: [NOIP2014]解方程 数学
3751: [NOIP2014]解方程 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=3751 Description 已知多项式方程: ...
- bzoj 3751: [NOIP2014]解方程 同余系枚举
3.解方程(equation.cpp/c/pas)[问题描述]已知多项式方程:a ! + a ! x + a ! x ! + ⋯ + a ! x ! = 0求这个方程在[1, m]内的整数解(n 和 ...
- [NOIP2014]解方程
3732 解方程 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 钻石 Diamond 题解 题目描述 Description 输入描述 Input Descrip ...
- BZOJ3751 NOIP2014 解方程(Hash)
题目链接 BZOJ3751 这道题的关键就是选取取模的质数. 我选了4个大概几万的质数,这样刚好不会T 然后统计答案的时候如果对于当前质数,产生了一个解. 那么对于那些对这个质数取模结果为这个数的数 ...
- [BZOJ3751][NOIP2014] 解方程
Description 已知多项式方程:a0+a1*x+a2*x^2+...+an*x^n=0 求这个方程在[1,m]内的整数解(n和m均为正整数). Input 第一行包含2个整数n.m,每两个 ...
- NOIP 2014 D2T3 解方程 Hash大法好
题目大意:给定高次方程an*x^n+...+a1*x^1+a0*x^0=0 求[1,m]区间内有多少个整数根 ai<=10^10000.m<=100W 懒得高精,考场上写的long dou ...
- NOIP2014解方程
题目:求一个n次整系数方程在1-m内的整数解 n<=100 系数<=10000位 m<=100W 题解:最暴力的想法是枚举x,带入求值看是否为0. 这样涉及到高精度乘高精度,高精度 ...
- [BZOJ3751] [NOIP2014] 解方程 (数学)
Description 已知多项式方程:$a_0+a_1*x+a_2*x^2+...+a_n*x^n=0$ 求这个方程在[1,m]内的整数解(n和m均为正整数). Input 第一行包含2个整数n.m ...
随机推荐
- mac 下 安装 mongodb
使用brew安装,不过brew不再更新, 通过 sudo chown -R $(whoami):admin /usr/local 这条语句终端有提醒的 xcode-select --install 需 ...
- 如何高效的使用 Git
-- 代码昨天还是运行好好的今天就不行了. 代码被删了. 突然出现了一个奇怪的 bug,但是没人知道怎么回事. 如果你出现过上面的任何一种情况,那本篇文章就是为你准备的. 除了知道 git add, ...
- MongoDB 查看所有用户账号信息
在 MongoDB 中创建了很多帐号,怎么查看所有帐号信息? 1. 查看全局所有账户 2. 查看当前库下的账户 查看全局所有账户 : > use admin switched to db adm ...
- 双击jar包运行方法
方案一 在jar包同级,写个bat文件,如下 java -jar Xxx.jar pause 方案二 右击jar文件 ->打开方式->选择安装的jre/bin/javaw.exe. 双击依 ...
- ubuntu中python2与python3的默认启动切换
方法摘自SegmentFault: 方法一: echo alias python=python3 >> ~/.bashrc && source ~/.bashrc相当于先打 ...
- canvas线性变换、颜色和样式选择
1.应用不同的线型 ctx.lineWidth = value; 线条的宽度,默认为1 ctx.lineCap = type; 设置端点样式, type默认为butt,可选值round,square, ...
- UIWebView和WKWebView的使用及js交互
UIWebView和WKWebView的使用及js交互 web页面和app直接的交互是很常见的东西,之前尝试过flex和js的相互调用以及android和js的相互调用,却只有ios没试过,据说比较复 ...
- js排序算法03——选择排序
选排序的思路是首先从要排序的数组中选择最小的和目前的第一位交换位置,然后从剩下的数中选择最小的和第二个位置的数交换位置,再从剩下的数中选择最小的和第三个位置的数交换位置,以此类推,实现代码如下: fu ...
- OLT配置学习
1.console连接跟一般交换机一样,不赘述 2.修改系统名称 Add Hostname/Device Name: huawei(config)#system sys-info descriptio ...
- 四、dbms_alert(用于生成并传递数据库预警信息)
1.概述 作用:用于生成并传递数据库预警信息.使用包DBMS_ALERT,则必须以SYS登陆,为该用户授予执行权限.sql>conn sys/oracle as sysdbasql>gra ...