【BZOJ 2440】 2440: [中山市选2011]完全平方数 (二分+容斥原理+莫比乌斯函数)
2440: [中山市选2011]完全平方数
Description
小 X 自幼就很喜欢数。但奇怪的是,他十分讨厌完全平方数。他觉得这些
数看起来很令人难受。由此,他也讨厌所有是完全平方数的正整数倍的数。然而
这丝毫不影响他对其他数的热爱。
这天是小X的生日,小 W 想送一个数给他作为生日礼物。当然他不能送一
个小X讨厌的数。他列出了所有小X不讨厌的数,然后选取了第 K个数送给了
小X。小X很开心地收下了。
然而现在小 W 却记不起送给小X的是哪个数了。你能帮他一下吗?Input
包含多组测试数据。文件第一行有一个整数 T,表示测试
数据的组数。
第2 至第T+1 行每行有一个整数Ki,描述一组数据,含义如题目中所描述。Output
含T 行,分别对每组数据作出回答。第 i 行输出相应的
第Ki 个不是完全平方数的正整数倍的数。Sample Input
4
1
13
100
1234567Sample Output
1
19
163
2030745HINT
对于 100%的数据有 1 ≤ Ki ≤ 10^9
, T ≤ 50
Source
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<queue>
#include<cmath>
using namespace std;
#define Maxn 100010
#define LL long long LL mu[Maxn],pri[Maxn],pl;
bool q[Maxn]; LL mymin(LL x,LL y) {return x<y?x:y;} void get_mu(LL mx)
{
pl=;
memset(q,,sizeof(q));
mu[]=;
for(LL i=;i<=mx;i++)
{
if(q[i])
{
pri[++pl]=i;
mu[i]=-;
}
for(LL j=;j<=pl;j++)
{
if(i*pri[j]>mx) break;
q[i*pri[j]]=;
if(i%pri[j]==) mu[i*pri[j]]=;
else mu[i*pri[j]]=-mu[i];
if(i%pri[j]==) break;
}
} } LL get_ans(LL n)
{
LL ans=;
LL sq=(LL)ceil(sqrt((double)n));
for(LL i=;i<=mymin(sq,n);i++)
{
ans+=mu[i]*(n/(i*i));
} return ans;
} LL ffind(LL k)
{
LL l=,r=k*;
while(l<r)
{
LL mid=(l+r)>>;
if(get_ans(mid)>=k) r=mid;
else l=mid+;
}
return l;
} int main()
{
int T;
T=;
scanf("%d",&T);
get_mu();
while(T--)
{
LL n;
scanf("%lld",&n); LL ans=ffind(n); printf("%lld\n",ans);
}
return ;
}
2017-03-23 10:27:20
【BZOJ 2440】 2440: [中山市选2011]完全平方数 (二分+容斥原理+莫比乌斯函数)的更多相关文章
- BZOJ2440 中山市选2011完全平方数(容斥原理+莫比乌斯函数)
如果能够知道不大于n的合法数有多少个,显然就可以二分答案了. 考虑怎么求这个.容易想到容斥,即枚举完全平方数.我们知道莫比乌斯函数就是此种容斥系数.筛出来就可以了. 注意二分时会爆int. #incl ...
- BZOJ_2440_[中山市选2011]完全平方数_容斥原理+线性筛
BZOJ_2440_[中山市选2011]完全平方数_容斥原理 题意: 求第k个不是完全平方数倍数的数 分析: 二分答案,转化成1~x中不是完全平方数倍数的数的个数 答案=所有数-1个质数的平方的倍数+ ...
- BZOJ 2440 [中山市选2011]完全平方数 (二分 + 莫比乌斯函数)
2440: [中山市选2011]完全平方数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 4805 Solved: 2325[Submit][Sta ...
- BZOJ 2440: [中山市选2011]完全平方数( 二分答案 + 容斥原理 + 莫比乌斯函数 )
先二分答案m,<=m的有m-∑(m/pi*pi)+∑(m/pi*pi*pj*pj)-……个符合题意的(容斥原理), 容斥系数就是莫比乌斯函数μ(预处理)... ----------------- ...
- 【BZOJ 2440】[中山市选2011]完全平方数
Description 小 X 自幼就很喜欢数.但奇怪的是,他十分讨厌完全平方数.他觉得这些数看起来很令人难受.由此,他也讨厌所有是完全平方数的正整数倍的数.然而这丝毫不影响他对其他数的热爱. 这天是 ...
- BZOJ 2440 [中山市选2011]完全平方数 二分+容斥
直接筛$\mu$?+爆算?再不行筛素数再筛个数?但不就是$\mu^2$的前缀和吗? 放...怕不是数论白学了$qwq$ 思路:二分+容斥 提交:两次(康了题解) 题解: 首先答案满足二分性质(递增), ...
- Bzoj 2440: [中山市选2011]完全平方数(莫比乌斯函数+容斥原理+二分答案)
2440: [中山市选2011]完全平方数 Time Limit: 10 Sec Memory Limit: 128 MB Description 小 X 自幼就很喜欢数.但奇怪的是,他十分讨厌完全平 ...
- BZOJ 2440 [中山市选2011]完全平方数 | 莫比乌斯函数
BZOJ 2440 [中山市选2011]完全平方数 | 莫比乌斯函数 题面 找出第k个不是平方数的倍数的数(1不是平方数, \(k \le 10^9\)). 题解 首先二分答案,问题就转化成了求\([ ...
- BZOJ 2440: [中山市选2011]完全平方数 [容斥原理 莫比乌斯函数]
2440: [中山市选2011]完全平方数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 3028 Solved: 1460[Submit][Sta ...
随机推荐
- Flask---使用Bootstrap新建第一个demo
Flask---使用Bootstrap新建第一个demo 参考自http://www.jianshu.com/p/417bcbad82fb 还有<Flask web开发> 前端用到Boot ...
- winform MDI子窗口闪动问题(本人测试100%有效解决闪屏问题)
将下面的代码随便放到主窗体的任何一个地方 protected override CreateParams CreateParams //解决MDI闪屏 { get { CreateParams cp ...
- 【leetcode 简单】 第八题 删除排序数组中的重复项
给定一个排序数组,你需要在原地删除重复出现的元素,使得每个元素只出现一次,返回移除后数组的新长度. 不要使用额外的数组空间,你必须在原地修改输入数组并在使用 O(1) 额外空间的条件下完成. 示例 1 ...
- 24、简述Python的深浅拷贝以及应用场景
深浅拷贝的原理 深浅拷贝用法来自copy模块. 导入模块:import copy 浅拷贝:copy.copy 深拷贝:copy.deepcopy 字面理解:浅拷贝指仅仅拷贝数据集合的第一层数据,深拷贝 ...
- Go语言 5 函数
文章由作者马志国在博客园的原创,若转载请于明显处标记出处:http://www.cnblogs.com/mazg/ 今天,我们来学习Go语言编程的第五章,函数.首先简单说一下函数的概念和作用.函数是一 ...
- Dull Chocolates Gym - 101991D 离散化 前缀和
题目链接:https://vjudge.net/problem/Gym-101991D 具体思路:首先看数据范围,暴力肯定不可以,可以下离散化,然后先求出离散化后每一个点到(1,1)的符合题目的要求的 ...
- uboot makefile构建分析-续
前言 这篇博文是 uboot makefile构建分析的续篇,继续分析uboot构建u-boot.bin的过程 构建u-boot.bin过程分析 makefile一开始,就是确定链接脚本.在构建ubo ...
- Nginx实现404页面的几种方法【转】
一个网站项目,肯定是避免不了404页面的,通常使用Nginx作为Web服务器时,有以下集中配置方式,一起来看看. 第一种:Nginx自己的错误页面 Nginx访问一个静态的html 页面,当这个页面没 ...
- 013 GC机制
本文转自:https://www.cnblogs.com/shudonghe/p/3457990.html 最近还是在找工作,在面试某移动互联网公司之前认为自己对Java的GC机制已经相当了解,其他面 ...
- java在图片上写字