2440: [中山市选2011]完全平方数

Description

小 X 自幼就很喜欢数。但奇怪的是,他十分讨厌完全平方数。他觉得这些
数看起来很令人难受。由此,他也讨厌所有是完全平方数的正整数倍的数。然而
这丝毫不影响他对其他数的热爱。 
这天是小X的生日,小 W 想送一个数给他作为生日礼物。当然他不能送一
个小X讨厌的数。他列出了所有小X不讨厌的数,然后选取了第 K个数送给了
小X。小X很开心地收下了。 
然而现在小 W 却记不起送给小X的是哪个数了。你能帮他一下吗?

Input

包含多组测试数据。文件第一行有一个整数 T,表示测试
数据的组数。 
第2 至第T+1 行每行有一个整数Ki,描述一组数据,含义如题目中所描述。

Output

含T 行,分别对每组数据作出回答。第 i 行输出相应的
第Ki 个不是完全平方数的正整数倍的数。

Sample Input

4
1
13
100
1234567

Sample Output

1
19
163
2030745

HINT

对于 100%的数据有 1 ≤ Ki ≤ 10^9

,    T ≤ 50

Source

 
【分析】
  之前做的,现在竟然想不到了。。
  二分。。。首先要知道这个数不会大于2*k【why?
  然后求小于等于mid的有多少个满足的数。
  可以知道如果这个数是某个数的平方的倍数,那么他分解质因数之后一定有一个的质数大于等于2
  这里要想到容斥原理,就是ans=n-n/(2*2)-n/(3*3)-...+n/(6*6)+...-...+...
  6因为是2和3的倍数,分解质因数之后有两个质因数,所以在容斥里面是加。
  跟莫比乌斯函数很像吧?它的系数就是莫比乌斯函数啊,想想定义、、
  真是太妙了【以后要多做点容斥的题目
  这样是只要算到根号n的
 
 #include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<queue>
#include<cmath>
using namespace std;
#define Maxn 100010
#define LL long long LL mu[Maxn],pri[Maxn],pl;
bool q[Maxn]; LL mymin(LL x,LL y) {return x<y?x:y;} void get_mu(LL mx)
{
pl=;
memset(q,,sizeof(q));
mu[]=;
for(LL i=;i<=mx;i++)
{
if(q[i])
{
pri[++pl]=i;
mu[i]=-;
}
for(LL j=;j<=pl;j++)
{
if(i*pri[j]>mx) break;
q[i*pri[j]]=;
if(i%pri[j]==) mu[i*pri[j]]=;
else mu[i*pri[j]]=-mu[i];
if(i%pri[j]==) break;
}
} } LL get_ans(LL n)
{
LL ans=;
LL sq=(LL)ceil(sqrt((double)n));
for(LL i=;i<=mymin(sq,n);i++)
{
ans+=mu[i]*(n/(i*i));
} return ans;
} LL ffind(LL k)
{
LL l=,r=k*;
while(l<r)
{
LL mid=(l+r)>>;
if(get_ans(mid)>=k) r=mid;
else l=mid+;
}
return l;
} int main()
{
int T;
T=;
scanf("%d",&T);
get_mu();
while(T--)
{
LL n;
scanf("%lld",&n); LL ans=ffind(n); printf("%lld\n",ans);
}
return ;
}

2017-03-23 10:27:20

【BZOJ 2440】 2440: [中山市选2011]完全平方数 (二分+容斥原理+莫比乌斯函数)的更多相关文章

  1. BZOJ2440 中山市选2011完全平方数(容斥原理+莫比乌斯函数)

    如果能够知道不大于n的合法数有多少个,显然就可以二分答案了. 考虑怎么求这个.容易想到容斥,即枚举完全平方数.我们知道莫比乌斯函数就是此种容斥系数.筛出来就可以了. 注意二分时会爆int. #incl ...

  2. BZOJ_2440_[中山市选2011]完全平方数_容斥原理+线性筛

    BZOJ_2440_[中山市选2011]完全平方数_容斥原理 题意: 求第k个不是完全平方数倍数的数 分析: 二分答案,转化成1~x中不是完全平方数倍数的数的个数 答案=所有数-1个质数的平方的倍数+ ...

  3. BZOJ 2440 [中山市选2011]完全平方数 (二分 + 莫比乌斯函数)

    2440: [中山市选2011]完全平方数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 4805  Solved: 2325[Submit][Sta ...

  4. BZOJ 2440: [中山市选2011]完全平方数( 二分答案 + 容斥原理 + 莫比乌斯函数 )

    先二分答案m,<=m的有m-∑(m/pi*pi)+∑(m/pi*pi*pj*pj)-……个符合题意的(容斥原理), 容斥系数就是莫比乌斯函数μ(预处理)... ----------------- ...

  5. 【BZOJ 2440】[中山市选2011]完全平方数

    Description 小 X 自幼就很喜欢数.但奇怪的是,他十分讨厌完全平方数.他觉得这些数看起来很令人难受.由此,他也讨厌所有是完全平方数的正整数倍的数.然而这丝毫不影响他对其他数的热爱. 这天是 ...

  6. BZOJ 2440 [中山市选2011]完全平方数 二分+容斥

    直接筛$\mu$?+爆算?再不行筛素数再筛个数?但不就是$\mu^2$的前缀和吗? 放...怕不是数论白学了$qwq$ 思路:二分+容斥 提交:两次(康了题解) 题解: 首先答案满足二分性质(递增), ...

  7. Bzoj 2440: [中山市选2011]完全平方数(莫比乌斯函数+容斥原理+二分答案)

    2440: [中山市选2011]完全平方数 Time Limit: 10 Sec Memory Limit: 128 MB Description 小 X 自幼就很喜欢数.但奇怪的是,他十分讨厌完全平 ...

  8. BZOJ 2440 [中山市选2011]完全平方数 | 莫比乌斯函数

    BZOJ 2440 [中山市选2011]完全平方数 | 莫比乌斯函数 题面 找出第k个不是平方数的倍数的数(1不是平方数, \(k \le 10^9\)). 题解 首先二分答案,问题就转化成了求\([ ...

  9. BZOJ 2440: [中山市选2011]完全平方数 [容斥原理 莫比乌斯函数]

    2440: [中山市选2011]完全平方数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 3028  Solved: 1460[Submit][Sta ...

随机推荐

  1. 51nod 1217 Minimum Modular

    N个不同的数a[1],a[2]...a[n],你可以从中去掉K个数,并且找到一个正整数M,使得剩下的N - K个数,Mod M的结果各不相同,求M的最小值. Input 第1行:2个数N, K,中间用 ...

  2. iOS数据存取---iOS-Apple苹果官方文档翻译

    CHENYILONG Blog iOS数据存取---iOS-Apple苹果官方文档翻译 数据存取/*技术博客http://www.cnblogs.com/ChenYilong/ 新浪微博http:// ...

  3. 使用Forms Authentication

    using System; using System.Web; using System.Web.Security;   namespace AuthTest {   public class Aut ...

  4. MYSQL的隐式类型转换

    官方文档中是这么说的 当操作者使用不同类型的操作数,操作数类型兼容的出现使 转换.一些 发生隐式转换.例如,MySQL会自动 将数字转换为字符串的必要,反之亦然. 也可以将数字转换为字符串明确 使用( ...

  5. [Leetcode] Sum 系列

    Sum 系列题解 Two Sum题解 题目来源:https://leetcode.com/problems/two-sum/description/ Description Given an arra ...

  6. 牛B的日本精神

    在汤森路透评选出的<2015全球创新企业百强>榜单里,日本以40家高居榜首,力压美国的35家.而中国内地无一入围.   在中国媒体上,我们见到的日本是“失去的20年”,经济衰退.创新能力丧 ...

  7. 64_n2

    nodejs-from-0.1.3-4.fc26.noarch.rpm 11-Feb-2017 15:01 9982 nodejs-from2-2.1.0-6.fc26.noarch.rpm 11-F ...

  8. 看看PHP迭代器的内部执行过程

    class myIterator implements Iterator { private $position = 0; private $array = array( "first_el ...

  9. Effective C++笔记(六):继承与面向对象设计

    参考:http://www.cnblogs.com/ronny/p/3756494.html 条款32:确定你的public继承塑模出is-a关系 “public继承”意味着is-a.适用于base ...

  10. Flyweight模式(亨元模式)

    这应该算是最好理解的一个设计模式了吧·················· 面向对象语言的原则就是一切都是对象,但是如果真正使用起来,有时对象数可能显得很庞大,比如,字处理软件,如果以每个文字都作为一个 ...