CRT模板题

/** @Date    : 2017-09-15 13:52:21
* @FileName: HDU 1573 CRT EXGCD.cpp
* @Platform: Windows
* @Author : Lweleth (SoungEarlf@gmail.com)
* @Link : https://github.com/
* @Version : $Id$
*/
#include <bits/stdc++.h>
#define LL long long
#define PII pair<int ,int>
#define MP(x, y) make_pair((x),(y))
#define fi first
#define se second
#define PB(x) push_back((x))
#define MMG(x) memset((x), -1,sizeof(x))
#define MMF(x) memset((x),0,sizeof(x))
#define MMI(x) memset((x), INF, sizeof(x))
using namespace std; const int INF = 0x3f3f3f3f;
const int N = 1e5+20;
const double eps = 1e-8; LL mod;
LL a[11];
LL b[11];
LL exgcd(LL a, LL b, LL &x, LL &y)
{
LL d = a;
if(b == 0)
x = 1, y = 0;
else
{
d = exgcd(b, a % b, y, x);
y -= (a / b) * x;
}
return d;
}
LL md(LL x,LL y)
{
LL res = x % y;
if(res <= 0)
res = res + y;
return res;
}
int main()
{
int T;
cin >> T;
while(T--)
{
LL n, m;
scanf("%lld%lld", &n, &m);
for(int i = 0; i < m; i++) scanf("%d", a + i);
for(int j = 0; j < m; j++) scanf("%d", b + j);
LL rem, mod;
LL x, y;
LL ans = 0;
int flag = 0;
rem = b[0], mod = a[0];
for(int i = 1; i < m ; i++)
{
LL c = b[i] - rem;
LL g = __gcd(a[i], mod);
if(c % g!= 0)
flag = 1;
else
{
exgcd(mod, a[i], x, y);
LL tmp = a[i] / g;
//x = (c / g * x % tmp + tmp) % tmp;// m1x1+m2x2 = c
x = md(c / g * x, tmp);//x =
rem = md(rem + mod * x, mod / g * a[i]);
//rem = mod * x + rem;//ri + mixi
mod = mod / __gcd(mod, a[i]) * a[i];//LCM(m1, m2);
//y mod lcm(m1,m2) = x
}
}
//cout << rem <<"~" << mod << endl;
if(flag || n < rem)
printf("0\n");
else printf("%lld\n", (n - rem) / mod + 1);
}
return 0;
}//shi·ne

HDU 1573 CRT的更多相关文章

  1. HDU 1930 CRT

    也是很模板的一道题,给出一些数,分割,模数固定是4个互质的. /** @Date : 2017-09-16 23:54:51 * @FileName: HDU 1930 CRT.cpp * @Plat ...

  2. 中国剩余定理 hdu 1573 X问题

    HDU 1573 X问题 Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Tota ...

  3. HDU 1573 X问题 中国剩余定理

    链接:pid=1573">http://acm.hdu.edu.cn/showproblem.php? pid=1573 题意:求在小于等于N的正整数中有多少个X满足:X mod a[ ...

  4. X问题 HDU - 1573(excrt入门题)

    X问题 Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  5. BZOJ 2976: [Poi2002]出圈游戏 HDU 5668 CRT

    2976: [Poi2002]出圈游戏 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=2976 Description Input 中第一 ...

  6. hdu 1573 X问题 (非互质的中国剩余定理)

    X问题 Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  7. hdu 1573 X问题

    数论题,本想用中国剩余定理,可是取模的数之间不一定互质,用不了,看到网上有篇文章写得很好的:数论——中国剩余定理(互质与非互质),主要是采用合并方程的思想: 大致理解并参考他的代码后便去试试hdu上这 ...

  8. hdu 1573 x问题(中国剩余定理)HDU 2007-1 Programming Contest

    只是套模板而已(模板其实也不懂). 留着以后好好学的时候再改吧. 题意—— X = a[i] MOD b[i]; 已知a[i],b[i],求在[1, n]中存在多少x满足条件. 输入—— 第一行一个整 ...

  9. hdu 1573 A/B (扩展欧几里得)

    Problem Description 要求(A/B)%9973,但由于A很大,我们只给出n(n=A%9973)(我们给定的A必能被B整除,且gcd(B,9973)= 1). Input 数据的第一行 ...

随机推荐

  1. OOP 学习笔记汇总

    1.1 引用 1.2 const关键字 1.3 动态内存分配 1.4 内联函数和重载函数函数参数缺省值 1.5 类和对象的基本概念与用法1 2.1 类和对象的基本概念2

  2. BETA阶段冲刺集合

    冲刺开始: https://www.cnblogs.com/LZTZ/p/9097296.html 第一天: https://www.cnblogs.com/LZTZ/p/9097303.html 第 ...

  3. Hibernate(七)

    三套查询之HQL查询(原文再续书接上一回) where子句部分(查询过滤部分) Hibernate的where子句部分能支持的运算符,表达式.函数特别多,用法与sql语句是一样的. 常用的表达式.运算 ...

  4. QHash和QMultiHash使用

    版权声明:若无来源注明,Techie亮博客文章均为原创. 转载请以链接形式标明本文标题和地址: 本文标题:QHash和QMultiHash使用     本文地址:http://techieliang. ...

  5. 【Leetcode】179. Largest Number

    Given a list of non negative integers, arrange them such that they form the largest number. For exam ...

  6. Mysql中关键词执行顺序

    MySQL的语句执行顺序 MySQL的语句一共分为11步,最先执行的总是FROM操作,最后执行的是LIMIT操作.其中每一个操作都会产生一张虚拟的表,这个虚拟的表作为一个处理的输入,只是这些虚拟的表对 ...

  7. Java设计模式 - 单例模式 (懒汉方式和饿汉方式)

    概念: Java中单例模式是一种常见的设计模式,单例模式的意思就是只有一个实例.单例模式确保某一个类只有一个实例,而且自行实例化并向整个系统提供这个实例.这个类称为单例类. 单例模式的写法有好几种,这 ...

  8. 最小生成树-Borůvka算法

    一般求最小生成树的时候,最流行的是Kruskal算法,一种基于拟阵证明的贪心,通过给边排序再扫描一次边集,利用并查集优化得到,复杂度为\(O(ElogE)\).另一种用得比较少的是Prim算法,利用优 ...

  9. 【二】shiro入门 之 身份验证

    大体步骤如下: 1.首先通过new IniSecurityManagerFactory 并指定一个ini 配置文件来创建一个SecurityManager工厂: 2.接着获取SecurityManag ...

  10. 具体数学斯特林数-----致敬Kunth

    注意这里讲的是斯特林数而非斯特林公式. 斯特林数分两类:第一类斯特林数 和 第二类斯特林数. 分别记为. 首先描述第二类斯特林数. 描述为:将一个有n件物品的集合划分成k个非空子集的方法数. 比如集合 ...