传送门:Problem 1904

https://www.cnblogs.com/violet-acmer/p/9739990.html

参考资料:

  [1]:http://www.cnblogs.com/frog112111/p/3384261.html

  [2]:https://blog.csdn.net/a709743744/article/details/52133778

  [3]:http://www.cppblog.com/Uriel/articles/121169.html

题意:

  有n个王子,每个王子都有k个喜欢的妹子,每个王子只能和喜欢的妹子结婚,大臣给出一个匹配表,每个王子都和一个妹子结婚,但是国王不满意,他要求大臣给他另一个表,每个王子可以和几个妹子结婚,按序号升序输出妹子的编号,这个表应满足所有的王子最终都有妹子和他结婚。

分析:

  很好的图论题,把强连通分量和完美匹配结合起来了。

  2*N 个顶点的2 分图,并且给了一个完美匹配(Perfect Matching)以及每个顶点可以连接的其他的顶点。

  题目要求是否可以确定某 2 个顶点连边后,其他 2*(N - 1) 个顶点的 2 分图是否可以构成完美匹配。

建图:

  如果王子u喜欢妹子v,则建一条边u指向v(u,v),对于大臣给出的初始完美匹配,如果王子u和妹子v结婚,则建一条边v指向u(v,u),然后求强连通分量。

  对于每个王子和妹子,如果他们都在同一个强连通分量内,则他们可以结婚。

  为什么呢?因为每个王子只能和喜欢的妹子结婚,初始完美匹配中的丈夫和妻子之间有两条方向不同的边可以互达,则同一个强连通分量中的王子数和妹子数一定是相等的,若王子 x 可以和另外的一个妹子 a 结婚,妹子 a 的原配王子 y 肯定能找到另外一个妹子 b 结婚,因为如果找不到的话,则 x 和 a 必不在同一个强连通分量中。

所以一个王子可以和所有与他同一强连通分量的妹子结婚,而这不会导致同一强连通分量中的其他王子找不到妹子结婚。

  (证明:王子为什么不能选择不同强连通分量的妹子:

  反证法:如果强连通分量 1 中的王子选择了强连通分量 2 中的妹子,那么势必强连通分量 2 中的一个王子无法在自己的强连通分量中找到妹子,那么他就会去别的强连通分量找妹子,这样一直循环下去,我们知道最终一定是经过了强连通分量 1,2,x1,x2,xn,……,1,王子们才能都找到自己的妹子,这样这些强连通分量1,2,x1,x2,xn,……,1会构成一个强连通分量,与题设在不同强连通分量中找妹子不符)

此题难点:建图

AC代码:

这一题的数据量挺大的,光是输入输出就会消耗很多时间了,可以用输入输出外挂来加速读入和输出。

Kosaraju算法:

 #include<iostream>
#include<cstdio>
#include<vector>
#include<cstring>
#include<algorithm>
using namespace std;
#define mem(a,b) memset(a,b,sizeof a)
#define pb push_back
const int maxV=4e3+; int scc[maxV];
bool vis[maxV];
vector<int >vs;
vector<int >edge[maxV],redge[maxV]; void addEdge(int u,int v)
{
edge[u].pb(v);
redge[v].pb(u);
}
void Dfs(int u)
{
vis[u]=true;
for(int i=;i < edge[u].size();++i)
{
int to=edge[u][i];
if(!vis[to])
Dfs(to);
}
vs.pb(u);
}
void rDfs(int u,int sccId)
{
scc[u]=sccId;
vis[u]=true;
for(int i=;i < redge[u].size();++i)
{
int to=redge[u][i];
if(!vis[to])
rDfs(to,sccId);
}
}
void Scc(int maxV)
{
mem(vis,false);
vs.clear();
for(int i=;i <= maxV;++i)
if(!vis[i])
Dfs(i);
mem(vis,false);
int sccId=;
for(int i=vs.size()-;i >= ;--i)
{
int v=vs[i];
if(!vis[v])
{
sccId++;
rDfs(v,sccId);
}
}
}
int main()
{
int N;
scanf("%d",&N);
for(int i=;i <= N;++i)
{
int k,v;
scanf("%d",&k);
while(k--)
{
scanf("%d",&v);
addEdge(i,v+N);//王子i喜欢妹子v
}
}
for(int i=;i <= N;++i)
{
int v;
scanf("%d",&v);
addEdge(v+N,i);//王子i可以和妹子v结婚
}
Scc(N);
for(int i=;i <= N;++i)
{
int res=;
int ans[maxV];
for(int j=;j < edge[i].size();++j)
{
int to=edge[i][j];
if(scc[i] == scc[to])//同一个强连通分量
ans[res++]=to;
}
sort(ans,ans+res);
printf("%d",res);
for(int j=;j < res;++j)
printf(" %d",ans[j]-N);
printf("\n");
}
}

不用输入输出挂

 #include<iostream>
#include<cstdio>
#include<vector>
#include<cstring>
#include<algorithm>
using namespace std;
#define mem(a,b) memset(a,b,sizeof a)
#define pb push_back
const int maxV=4e3+; int scc[maxV];
bool vis[maxV];
vector<int >vs;
vector<int >edge[maxV],redge[maxV]; void addEdge(int u,int v)
{
edge[u].pb(v);
redge[v].pb(u);
}
void Dfs(int u)
{
vis[u]=true;
for(int i=;i < edge[u].size();++i)
{
int to=edge[u][i];
if(!vis[to])
Dfs(to);
}
vs.pb(u);
}
void rDfs(int u,int sccId)
{
scc[u]=sccId;
vis[u]=true;
for(int i=;i < redge[u].size();++i)
{
int to=redge[u][i];
if(!vis[to])
rDfs(to,sccId);
}
}
void Scc(int maxV)
{
mem(vis,false);
vs.clear();
for(int i=;i <= maxV;++i)
if(!vis[i])
Dfs(i);
mem(vis,false);
int sccId=;
for(int i=vs.size()-;i >= ;--i)
{
int v=vs[i];
if(!vis[v])
{
sccId++;
rDfs(v,sccId);
}
}
}
//===============输入输出挂===============
int Scan() //输入外挂
{
int res=,ch,flag=;
if((ch=getchar())=='-')
flag=;
else if(ch>=''&&ch<='')
res=ch-'';
while((ch=getchar())>=''&&ch<='')
res=res*+ch-''; return flag?-res:res;
}
void Out(int a) //输出外挂
{
if(a>)
Out(a/);
putchar(a%+'');
}
//========================================
int main()
{
int N;
scanf("%d",&N);
for(int i=;i <= N;++i)
{
int k,v;
//scanf("%d",&k);
k=Scan();
while(k--)
{
//scanf("%d",&v);
v=Scan();
addEdge(i,v+N);//王子i喜欢妹子v
}
}
for(int i=;i <= N;++i)
{
int v;
//scanf("%d",&v);
v=Scan();
addEdge(v+N,i);//王子i可以和妹子v结婚
}
Scc(N);
for(int i=;i <= N;++i)
{
int res=;
int ans[maxV];
for(int j=;j < edge[i].size();++j)
{
int to=edge[i][j];
if(scc[i] == scc[to])//同一个强连通分量
ans[res++]=to;
}
sort(ans,ans+res);
//printf("%d",res);
Out(res);
for(int j=;j < res;++j)
{
printf(" ");
Out(ans[j]-N);
//printf(" %d",ans[j]-N);
}
printf("\n");
}
}

调用输入输出挂

好晚了,身心疲惫,明天在补Tarjan算法...............

poj 1904(强连通分量+完美匹配)的更多相关文章

  1. POJ 1904 King's Quest (强连通分量+完美匹配)

    <题目链接> 题目大意: 有n个王子,每个王子都有k个喜欢的妹子,每个王子只能和喜欢的妹子结婚,大臣给出一个匹配表,每个王子都和一个妹子结婚,但是国王不满意,他要求大臣给他另一个表,每个王 ...

  2. poj 1904(强连通分量+输入输出外挂)

    题目链接:http://poj.org/problem?id=1904 题意:有n个王子,每个王子都有k个喜欢的妹子,每个王子只能和喜欢的妹子结婚,大臣给出一个匹配表,每个王子都和一个妹子结婚,但是国 ...

  3. poj 1904 强连通分量

    思路:先有每个儿子向所有他喜欢的姑娘建边,对于最后给出的正确匹配,我们建由姑娘到相应王子的边.和某个王子在同一强连通分量,且王子喜欢的姑娘都是该王子能娶得.思想类似匈牙利算法求匹配的时候,总能找到增广 ...

  4. poj 2186 强连通分量

    poj 2186 强连通分量 传送门 Popular Cows Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 33414 Acc ...

  5. poj 2762(强连通分量+拓扑排序)

    题目链接:http://poj.org/problem?id=2762 题意:给出一个有向图,判断任意的两个顶点(u,v)能否从u到达v,或v到达u,即单连通,输出Yes或No. 分析:对于同一个强连 ...

  6. poj 1236(强连通分量分解模板题)

    传送门 题意: N(2<N<100)个学校之间有单向的网络,每个学校得到一套软件后,可以通过单向网络向周边的学校传输. 问题1:初始至少需要向多少个学校发放软件,使得网络内所有的学校最终都 ...

  7. POJ(2186)强连通分量分解

    #include<cstdio> #include<vector> #include<cstring> using namespace std; ; vector& ...

  8. Popular Cows POJ - 2186(强连通分量)

    Every cow's dream is to become the most popular cow in the herd. In a herd of N (1 <= N <= 10, ...

  9. POJ 1904 King's Quest ★(强连通分量:可行完美匹配边)

    题意 有n个女生和n个男生,给定一些关系表示男生喜欢女生(即两个人可以结婚),再给定一个初始匹配,表示这个男生和哪个女生结婚,初始匹配必定是合法的.求每个男生可以和哪几个女生可以结婚且能与所有人不发生 ...

随机推荐

  1. PHP从入门到精通(三)

    PHP数组的分类 按照下标的不同,PHP数组分为关联数组与索引数组: 索引数组:下标从0开始,依次增长:关联数组: 下标为字符串格式,每个下标字符串与数组的值一一关联对应.(有点像对象的键值对) 关于 ...

  2. 关于dreamweaver的软件测评

    最近在用javascript编写程序,于是便用到了dreamweaver .所以,想写一个关于dreamweaver的软件测评. 学生本人使用的是dreamweaver 8.首先,谈谈本人使用感受,打 ...

  3. Word frequency program ver.1

    先吐槽一下自己 做这个作业的时候完全没有提前考虑好时间 导致要提交前一天晚上通宵写代码 而且还满满的bug TAT 缓一口气 程序还在继续写 先把有点累 想着先把博客写了 PART I 预计时间: 语 ...

  4. 一些调格式的经验 & 插入图注和尾注

    一些调格式的经验(以Word2010为例) 1. 从目录正文分别编页码 将光标放在要重新编写页码起始页的最开始位置 分节:页面布局->分隔符->分节符(连续) 插入页码后,选中页码起始页页 ...

  5. Linux&docker&cgroups

    cgroup https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/resource_manage ...

  6. ModSecurity is an open source, cross-platform web application firewall (WAF) module.

    http://www.modsecurity.org/ ModSecurity is an open source, cross-platform web application firewall ( ...

  7. yarn工具的使用

    <!-- yarn init === npm init --> <!-- yarn login === npm adduser -->登录 <!-- yarn publi ...

  8. Docker(二十七)-Docker 清理占用的磁盘空间

    1. docker system命令 docker system df命令,类似于Linux上的df命令,用于查看Docker的磁盘使用情况: docker system dfTYPE TOTAL A ...

  9. Docker 方式运行 sonarqube

    From 平台测试部同事的 ppt 感谢. 拉取镜像 docker pull postgres docker pull sonarqube 运行镜像 docker run --name db --re ...

  10. linux学习之centos(三):mysql数据库的安装和配置

    前言:mysql简介 说到数据库,我们大多想到的是关系型数据库,比如mysql.oracle.sqlserver等等,这些数据库软件在windows上安装都非常的方便,在Linux上如果要安装数据库, ...