此处纯粹作为个人学习使用,原文连接:https://www.jianshu.com/p/dc24e54aec81

这篇文章是借鉴很多博文的,作为一个关于slim库的总结

导入slim模块

import tensorflow.contrib.slim as slim

定义slim的变量

#Model Variables
weights = slim.model_variable('weights', shape = [10, 10, 3, 3],
initializer = tf.truncated_normal_initializer(stddev=0.1)
regularizer = slim.l2_regularizer(0.05),
device='/CPU:0')
model_variables = slim.get_model_variables() #获取变量吗? # Regular variables
my_var = slim.variable('my_var", shape=[20, 1],
initializer = tf.zeros_initializer())
regular_variables_and_model_variables = slim.get_variables()

# 这里的model_variable是作为模型参数保存的,variable是局部变量,不会保存。

Slim中实现一个层

input = ...
net = slim.conv2d(input, 128, [3,3], scope='conv1_1') # 代码重用
net = slim.repeat(net, 3, slim.conv2d, 256, [3,3], scope='conv3')
net = slim.max_pool2d(net, [2, 2], scope='pool2') # 处理不同参数情况
x = slim.fully_connected(x, 32, scope='fc/fc_1')
x = slim.fully_connected(x, 64, scope ='fc/fc_2')
x = slim.fuly_connected(x, 128, scope = 'fc/fc_3')
# or
slim.stack(x, slim.fully_connected, [32, 64, 128], scope='fc') # 普通方法
x = slim.conv2d(x, 32, [3, 3], scope='core/core_1')
x = slim.conv2d(x, 32, [1, 1], scope='core/core_2')
x = slim.conv2d(x, 64, [3, 3], scope='core/core_3')
x = slim.conv2d(x, 64, [1, 1], scope='core/core_4') # 简便方法:
slim.stack(x, slim.conv2d, [(32, [3,3]), (32, [1,1]), (64, [3,3]), (64, [1,1]), scopre='core')

定义相同参数的简化

with slim.arg_scope([slim.conv2d],  padding='SAME',
weights_initializer=tf.truncated_normal_initializer(stddev=0.01),
weights_regularizer=slim.l2_regularizer(0.0005)):
net = slim.conv2d(inputs, 64, [11, 11], scope='conv1')
net = slim.conv2d(net, [11,11], padding=' VALID', scope='conv2')
net = slim.conv2d(net, 256, [11, 11], scope='conv3') # arg_scope的嵌套
with slim.arg_scope([slim.conv2d, slim.fully_connected],
activation_fn=tf.nn.rely,
weights_initializer=tf.truncated_normal_initialier(stddev=0.01),
weights_regularizer=slim.l2_regularizer(0.0005)):
with slim.arg_scope([slim.conv2d], stride=1, padding='SAME'):
net = slim.conv2d(inputs, 64, [11, 11], 4, padding='VALID', scope='conv1')
net = slim.conv2d(net, 256, [5, 5],
weights_initializer=tf.truncated_normal_initializer(stddev=0.03),
scope='conv2')
net = slim.fully_connected(net, 1000, activation_fn=None, scope='fc')

训练模型

loss = slim.losses.softmax_cross_entropy(predictions, labels)
# 自定义loss模型
# define the loss functions and get the total loss.
classification_loss = slim.losses.softmax_cross_entropy(scene_predictions, scene_labels)
sum_of_squares_loss = slim.losses.sum_of_squares(depth_predictions, depth_labels)
pose_loss = MyCustomLossFunction(pose_predictions, pose_labels)
slim.losses.add_loss(pose_loss) # Letting TF-Slim know about the additional loss. # The following two ways to compute the total loss are equivalent:
regularization_loss = tf.add_n(slim.losses.get_regularization_losses())
total_loss1 = classification_loss + sum_of_squares_loss + poses_loss + regularization_loss

# slim读取保存模型的方法

# Create some variables.
v1 = slim.variable(name='v1', ...)
v2 = slim.variable(name=''nested/v2', ...)
... # Get list of variables to restore (which contains only 'v2')
variables_to_restore = slim.get_variables_by_name("v2") # Create the saver which will be used to restore the varialbes.
restorer = tf.train.Saver(variables_to_restore) with tf.Session() as sess:
# Restore variables from disk.
restores.restore(sess, "/tmp/model.ckpt")
print("Model restored.") # 为模型添加变量前缀
# 假设我们定义的网络变量是conv1/weights, 而从VGG记载的变量名为#vgg16/conv1/weights, 正常load肯定会报错
def name_in_checkpoint(var):
return 'vgg16/' + var.op.name variables_to_restore = slim.get_model_variables()
variables_to_restore = {name_in_checkpoint(var):var for var in variables_to_restore}
restorer = tf.train.Saver(variables_to_restore) with tf.Session() as sess:
# Restore variables from disk.
restorer.restore(sess, "/tmp/model.ckpt")

训练模型

在该例中, slim.learning.train根据train_op计算损失、应用梯度step. logdir指定checkpoints和event文件的存储路径。我们可以限制梯度step到任何数值。这里我们采用1000步。最后, save_summaries_secs=300表示每5分钟计算一次summaries, save_interval_secs=600表示每10分钟保存一次模型的checkpoint

g = tf.Graph()

# Create the model and specify the losses...
... total_loss = slim.losses.get_total_loss()
optimizer = tf.train.GradientDescentOptimizer(learning_rate) # create_train_op ensures that each time we ask for the loss, the update_ops
# are run and the gradients being computed are applied too.
train_op = slim.learning.create_train_op(total_loss, optimizer)
logdir = ... # Where checkpoints are stored. slim.learning.train(
train_op,
logdir,
number_of_steps=1000,
save_summaries_secs=300,
save_interval_secs=600)

Fine-Tuning a Model on a different task

假设我们有一个已经预训练好的VGG16的模型。这个模型是在拥有1000分类的ImageNet数据集上进行训练的。但是,现在我们想把它应用只具有20个分类的Pascal VOC数据集上。为了能这样做,我们可以通过利用除最后一些全连接层的其它预训练模型来初始化新模型的达到目的:

# Load the Pascal VOC data
image, label = MyPascalVocDataLoader(...)
images, labels = tf.train.batch([image, label], batch_size = 32) # Create the model
predictions = vgg.vgg_16(images)
train_op = slim.learning.create_train_op(...) # Specify where the Model, trained on ImageNet, was saved.
model_path = '/path/to/pre_trained_on_imagenet.checkpoint'
metric_ops.py
# Specify where the new model will live:
log_dir = from_checkpoint_'/path/to/my_pascal_model_dir/' # Restore only the convolutional layers:
variables_to_restore = slim.get_variables_to_restore(exclude=['fc6', 'fc7', 'fc8'])
init_fn = assign_from_checkpoint_fn(model_path, variables_to_restore) # Start training.
slim.learning.train(train_op, log_dir, init_fn=init_fn)

evaluation loop

import tensorflow as tf

slim = tf.contrib.slim

# Load the data
images, labels = load_data(...) # Define the network
predictions = MyModel(images) # Choose the metrics to compute:
names_to_values, names_to_updates = slim.metrics.aggregate_metric_map({
'accuracy': slim.metrics.accuracy(predictions, labels),
'precision': slim.metrics.precision(predictions, labels),
'recall': slim.metrics.recall(mean_relative_errors, 0.3),
}) # Create the summary ops such that they also print out to std output:
summary_ops = []
for metric_name, metric_value in names_to_values.iteritems():
op = tf.summary.scalar(metric_name, metric_value)
op = tf.Print(op, [metric_value], metric_name)
summary_ops.append(op) num_examples = 10000
batch_size = 32
num_batches = math.ceil(num_examples / float(batch_size)) # Setup the global step.
slim.get_or_create_global_step() output_dir = ... # Where the summaries are stored.
eval_interval_secs = ... # How often to run the evaluation.
slim.evaluation.evaluation_loop(
'local',
checkpoint_dir,
log_dir,
num_evals=num_batches,
eval_op=names_to_updates.values(),
summary_op=tf.summary.merge(summary_ops),
eval_interval_secs=eval_interval_secs)

tensorflow slim代码使用的更多相关文章

  1. 使用笔记:TF辅助工具--tensorflow slim(TF-Slim)

    如果抛开Keras,TensorLayer,tfLearn,tensroflow 能否写出简介的代码? 可以!slim这个模块是在16年新推出的,其主要目的是来做所谓的“代码瘦身” 一.简介 slim ...

  2. 解决TensorFlow最新代码编译错误问题

    老是有个习惯,看到开源代码更新了,总是想更新到最新版,如果置之不理的话,就感觉自己懒惰了或有的不负责任了,这个也可能是一种形式的强迫症吧: 前几天晚上git pull TensorFlow,完事后也没 ...

  3. tensorflow没有代码提示的问题

    在tensorflow包下的__init__.py文件中定义了一个contrib变量表示tensorflow.contrib包下的内容,但是tensorflow.contrib这个包是懒加载的,也就是 ...

  4. google tensorflow bert代码分析

    参考网上博客阅读了bert的代码,记个笔记.代码是 bert_modeling.py 参考的博客地址: https://blog.csdn.net/weixin_39470744/article/de ...

  5. tensorflow训练代码

    from tensorflow.examples.tutorials.mnist import input_data import tensorflow as tf mnist = input_dat ...

  6. tensorflow TensorArray 代码例子

    import tensorflow as tf import numpy as np B=3 D=4 T=5 tf.reset_default_graph() xs=tf.placeholder(sh ...

  7. Tensorflow模型代码调试问题

    背景: 不知道大家有没有这样的烦恼:在使用Tensorflow搭建好模型调试的过程中,经常会碰到一些问题,当时花了不少时间把这个问题解决了,一段时间后,又出现了同样的问题,却怎么也不记得之前是怎么解决 ...

  8. TensorFlow Slim 的常用操作

    https://blog.csdn.net/mzpmzk/article/details/81706379

  9. tensorflow slim训练以及到安卓部署教程

    https://blog.csdn.net/chenyuping333/article/details/81537551 https://blog.csdn.net/u012328159/articl ...

随机推荐

  1. 对于文本生成类4种评价指标的的计算BLEU METEOR ROUGE CIDEr

    github下载链接:https://github.com/Maluuba/nlg-eval 将下载的文件放到工程目录,而后使用如下代码计算结果 具体的写作格式如下: from nlgeval imp ...

  2. OverLoad怎么用

    首先给出一个实例 package practice3; public class TryOverLoad { public static void main(String[] args) { Syst ...

  3. Linux配置部署_新手向(三)——MySql安装与配置

    目录 前言 安装 防火墙 小结 前言 马上就要放假了,按捺不住激动的心情(其实是实在敲不下去代码),就继续鼓捣虚拟机来做些常规的安装与使用吧,毕竟闲着也是闲着,唉,opengl还是难啊. 安装 其实网 ...

  4. 整理了8个Python中既冷门又实用的技巧

    1.print 打印带有颜色的信息 大家知道 Python 中的信息打印函数 print,一般我们会使用它打印一些东西,作为一个简单调试. 但是你知道么,这个 Print 打印出来的字体颜色是可以设置 ...

  5. Java的三种代理模式&完整源码分析

    Java的三种代理模式&完整源码分析 参考资料: 博客园-Java的三种代理模式 简书-JDK动态代理-超详细源码分析 [博客园-WeakCache缓存的实现机制](https://www.c ...

  6. 剑指offer 21:包含min函数的栈

    题目描述 定义栈的数据结构,请在该类型中实现一个能够得到栈中所含最小元素的min函数(时间复杂度应为O(1)). 解题思路 要求在O(1)时间内完成,由于栈后进先出的原则,不能出现破坏栈结构的事情.因 ...

  7. oracle体系结构简介

    oracle体系结构简介 一.物理存储结构    1.数据文件       存放数据库数据,以dbf为扩展名.将数据放在多个数据文件中,       再将数据文件分放在不同的硬盘中,可以提高存取速度. ...

  8. pymysql连接

    import pymysql conn=pymysql.connect(host='localhost',user='root',password='123',db='sg',charset='utf ...

  9. RMAN 'Duplicate From Active Database' Feature in Oracle11g (Doc ID 452868.1)

    RMAN 'Duplicate From Active Database' Feature in Oracle11g (Doc ID 452868.1) APPLIES TO: Oracle Data ...

  10. linux相关(一)

    一.调整xshell终端显示的最大行数 1.文件 -> 属性 -> 终端,如下图 2.调整缓冲区大小的行数,确定即可,如下图: 注意:此方法只是修改了连接该主机时的显示行数,其他主机的还是 ...