tensorflow slim代码使用
此处纯粹作为个人学习使用,原文连接:https://www.jianshu.com/p/dc24e54aec81
这篇文章是借鉴很多博文的,作为一个关于slim库的总结
导入slim模块
import tensorflow.contrib.slim as slim
定义slim的变量
#Model Variables
weights = slim.model_variable('weights', shape = [10, 10, 3, 3],
initializer = tf.truncated_normal_initializer(stddev=0.1)
regularizer = slim.l2_regularizer(0.05),
device='/CPU:0')
model_variables = slim.get_model_variables() #获取变量吗? # Regular variables
my_var = slim.variable('my_var", shape=[20, 1],
initializer = tf.zeros_initializer())
regular_variables_and_model_variables = slim.get_variables()
# 这里的model_variable是作为模型参数保存的,variable是局部变量,不会保存。
Slim中实现一个层
input = ...
net = slim.conv2d(input, 128, [3,3], scope='conv1_1') # 代码重用
net = slim.repeat(net, 3, slim.conv2d, 256, [3,3], scope='conv3')
net = slim.max_pool2d(net, [2, 2], scope='pool2') # 处理不同参数情况
x = slim.fully_connected(x, 32, scope='fc/fc_1')
x = slim.fully_connected(x, 64, scope ='fc/fc_2')
x = slim.fuly_connected(x, 128, scope = 'fc/fc_3')
# or
slim.stack(x, slim.fully_connected, [32, 64, 128], scope='fc') # 普通方法
x = slim.conv2d(x, 32, [3, 3], scope='core/core_1')
x = slim.conv2d(x, 32, [1, 1], scope='core/core_2')
x = slim.conv2d(x, 64, [3, 3], scope='core/core_3')
x = slim.conv2d(x, 64, [1, 1], scope='core/core_4') # 简便方法:
slim.stack(x, slim.conv2d, [(32, [3,3]), (32, [1,1]), (64, [3,3]), (64, [1,1]), scopre='core')
定义相同参数的简化
with slim.arg_scope([slim.conv2d], padding='SAME',
weights_initializer=tf.truncated_normal_initializer(stddev=0.01),
weights_regularizer=slim.l2_regularizer(0.0005)):
net = slim.conv2d(inputs, 64, [11, 11], scope='conv1')
net = slim.conv2d(net, [11,11], padding=' VALID', scope='conv2')
net = slim.conv2d(net, 256, [11, 11], scope='conv3') # arg_scope的嵌套
with slim.arg_scope([slim.conv2d, slim.fully_connected],
activation_fn=tf.nn.rely,
weights_initializer=tf.truncated_normal_initialier(stddev=0.01),
weights_regularizer=slim.l2_regularizer(0.0005)):
with slim.arg_scope([slim.conv2d], stride=1, padding='SAME'):
net = slim.conv2d(inputs, 64, [11, 11], 4, padding='VALID', scope='conv1')
net = slim.conv2d(net, 256, [5, 5],
weights_initializer=tf.truncated_normal_initializer(stddev=0.03),
scope='conv2')
net = slim.fully_connected(net, 1000, activation_fn=None, scope='fc')
训练模型
loss = slim.losses.softmax_cross_entropy(predictions, labels)
# 自定义loss模型
# define the loss functions and get the total loss.
classification_loss = slim.losses.softmax_cross_entropy(scene_predictions, scene_labels)
sum_of_squares_loss = slim.losses.sum_of_squares(depth_predictions, depth_labels)
pose_loss = MyCustomLossFunction(pose_predictions, pose_labels)
slim.losses.add_loss(pose_loss) # Letting TF-Slim know about the additional loss. # The following two ways to compute the total loss are equivalent:
regularization_loss = tf.add_n(slim.losses.get_regularization_losses())
total_loss1 = classification_loss + sum_of_squares_loss + poses_loss + regularization_loss
# slim读取保存模型的方法
# Create some variables.
v1 = slim.variable(name='v1', ...)
v2 = slim.variable(name=''nested/v2', ...)
... # Get list of variables to restore (which contains only 'v2')
variables_to_restore = slim.get_variables_by_name("v2") # Create the saver which will be used to restore the varialbes.
restorer = tf.train.Saver(variables_to_restore) with tf.Session() as sess:
# Restore variables from disk.
restores.restore(sess, "/tmp/model.ckpt")
print("Model restored.") # 为模型添加变量前缀
# 假设我们定义的网络变量是conv1/weights, 而从VGG记载的变量名为#vgg16/conv1/weights, 正常load肯定会报错
def name_in_checkpoint(var):
return 'vgg16/' + var.op.name variables_to_restore = slim.get_model_variables()
variables_to_restore = {name_in_checkpoint(var):var for var in variables_to_restore}
restorer = tf.train.Saver(variables_to_restore) with tf.Session() as sess:
# Restore variables from disk.
restorer.restore(sess, "/tmp/model.ckpt")
训练模型
在该例中, slim.learning.train根据train_op计算损失、应用梯度step. logdir指定checkpoints和event文件的存储路径。我们可以限制梯度step到任何数值。这里我们采用1000步。最后, save_summaries_secs=300表示每5分钟计算一次summaries, save_interval_secs=600表示每10分钟保存一次模型的checkpoint
g = tf.Graph() # Create the model and specify the losses...
... total_loss = slim.losses.get_total_loss()
optimizer = tf.train.GradientDescentOptimizer(learning_rate) # create_train_op ensures that each time we ask for the loss, the update_ops
# are run and the gradients being computed are applied too.
train_op = slim.learning.create_train_op(total_loss, optimizer)
logdir = ... # Where checkpoints are stored. slim.learning.train(
train_op,
logdir,
number_of_steps=1000,
save_summaries_secs=300,
save_interval_secs=600)
Fine-Tuning a Model on a different task
假设我们有一个已经预训练好的VGG16的模型。这个模型是在拥有1000分类的ImageNet数据集上进行训练的。但是,现在我们想把它应用只具有20个分类的Pascal VOC数据集上。为了能这样做,我们可以通过利用除最后一些全连接层的其它预训练模型来初始化新模型的达到目的:
# Load the Pascal VOC data
image, label = MyPascalVocDataLoader(...)
images, labels = tf.train.batch([image, label], batch_size = 32) # Create the model
predictions = vgg.vgg_16(images)
train_op = slim.learning.create_train_op(...) # Specify where the Model, trained on ImageNet, was saved.
model_path = '/path/to/pre_trained_on_imagenet.checkpoint'
metric_ops.py
# Specify where the new model will live:
log_dir = from_checkpoint_'/path/to/my_pascal_model_dir/' # Restore only the convolutional layers:
variables_to_restore = slim.get_variables_to_restore(exclude=['fc6', 'fc7', 'fc8'])
init_fn = assign_from_checkpoint_fn(model_path, variables_to_restore) # Start training.
slim.learning.train(train_op, log_dir, init_fn=init_fn)
evaluation loop
import tensorflow as tf slim = tf.contrib.slim # Load the data
images, labels = load_data(...) # Define the network
predictions = MyModel(images) # Choose the metrics to compute:
names_to_values, names_to_updates = slim.metrics.aggregate_metric_map({
'accuracy': slim.metrics.accuracy(predictions, labels),
'precision': slim.metrics.precision(predictions, labels),
'recall': slim.metrics.recall(mean_relative_errors, 0.3),
}) # Create the summary ops such that they also print out to std output:
summary_ops = []
for metric_name, metric_value in names_to_values.iteritems():
op = tf.summary.scalar(metric_name, metric_value)
op = tf.Print(op, [metric_value], metric_name)
summary_ops.append(op) num_examples = 10000
batch_size = 32
num_batches = math.ceil(num_examples / float(batch_size)) # Setup the global step.
slim.get_or_create_global_step() output_dir = ... # Where the summaries are stored.
eval_interval_secs = ... # How often to run the evaluation.
slim.evaluation.evaluation_loop(
'local',
checkpoint_dir,
log_dir,
num_evals=num_batches,
eval_op=names_to_updates.values(),
summary_op=tf.summary.merge(summary_ops),
eval_interval_secs=eval_interval_secs)
tensorflow slim代码使用的更多相关文章
- 使用笔记:TF辅助工具--tensorflow slim(TF-Slim)
如果抛开Keras,TensorLayer,tfLearn,tensroflow 能否写出简介的代码? 可以!slim这个模块是在16年新推出的,其主要目的是来做所谓的“代码瘦身” 一.简介 slim ...
- 解决TensorFlow最新代码编译错误问题
老是有个习惯,看到开源代码更新了,总是想更新到最新版,如果置之不理的话,就感觉自己懒惰了或有的不负责任了,这个也可能是一种形式的强迫症吧: 前几天晚上git pull TensorFlow,完事后也没 ...
- tensorflow没有代码提示的问题
在tensorflow包下的__init__.py文件中定义了一个contrib变量表示tensorflow.contrib包下的内容,但是tensorflow.contrib这个包是懒加载的,也就是 ...
- google tensorflow bert代码分析
参考网上博客阅读了bert的代码,记个笔记.代码是 bert_modeling.py 参考的博客地址: https://blog.csdn.net/weixin_39470744/article/de ...
- tensorflow训练代码
from tensorflow.examples.tutorials.mnist import input_data import tensorflow as tf mnist = input_dat ...
- tensorflow TensorArray 代码例子
import tensorflow as tf import numpy as np B=3 D=4 T=5 tf.reset_default_graph() xs=tf.placeholder(sh ...
- Tensorflow模型代码调试问题
背景: 不知道大家有没有这样的烦恼:在使用Tensorflow搭建好模型调试的过程中,经常会碰到一些问题,当时花了不少时间把这个问题解决了,一段时间后,又出现了同样的问题,却怎么也不记得之前是怎么解决 ...
- TensorFlow Slim 的常用操作
https://blog.csdn.net/mzpmzk/article/details/81706379
- tensorflow slim训练以及到安卓部署教程
https://blog.csdn.net/chenyuping333/article/details/81537551 https://blog.csdn.net/u012328159/articl ...
随机推荐
- C语言复习上
通常开始学习C语言的时候,第一句写的就是"helloword" int main(){ printf("hello word"); } 接下来的日子里需要注意的 ...
- 011.Kubernetes二进制部署kube-scheduler
一 部署高可用kube-scheduler 1.1 高可用kube-scheduler介绍 本实验部署一个三实例 kube-scheduler 的集群,启动后将通过竞争选举机制产生一个 leader ...
- openstack Glance安装与配置
一.实验目的: 1.理解glance镜像服务在OpenStack框架中的作用 2.掌握glance服务安装的基本方法 3.掌握glance的配置基本方法 二.实验步骤: 1.在controller节点 ...
- Fiddle无法抓取网页信息或HTTPS
1:清除电脑根证书: 打开dos命令框,输入:certmgr.msc ![file](https://img2018.cnblogs.com/blog/1023158/201912/1023158-2 ...
- vue 父子父组件通过props传父页面请求后的数据
父子父组件通过props传父页面请求后的数据,则在父页面的子组件上加上判断数据是否存在即可,如下 <gl-line-bar v-if="oneWeekBetEcharts" ...
- dotnet core 调用electron来开发UI的探索
先上仓库地址 https://github.com/lightszero/webwindow.netcore dotnet core 很喜欢,问题dotnet core 不包含GUI,经过一些尝试,觉 ...
- 在windows桌面上创建一个文件夹
用dos命令创建 md [文件路径][文件名] C:\Users\admin>md C:\Users\admin\desktop\test 刷新一下桌面,就可以看见桌面上创建了一个名为test ...
- Ubuntu 合上笔记本不会进入休眠模式
首先 sudo vim /etc/systemd/logind.conf 把文件中的 #HandleLidSwitch=suspend 修改成 HandleLidSwitch=ignore 重启服务 ...
- tensorflow convert_variables_to_constants
在使用tf.train.Saver函数保存模型文件的时候,是保存所有的参数信息,而有些时候我们并不需要所有的参数信息.我们只需要知道神经网络的输入层经过前向传播计算得到输出层即可,所以在保存的时候,我 ...
- go语言之指针
package main import "fmt" //指针 //go语言的指针是非常容易学习的,比c中容易很多,他可以更简单的执行一些任务 //与变量类型,使用前需要定义 fun ...