-->Frogger

中文翻译

Descriptions:

湖中有n块石头,编号从1到n,有两只青蛙,Bob在1号石头上,Alice在2号石头上,Bob想去看望Alice,但由于水很脏,他想避免游泳,于是跳着去找她。但是Alice的石头超出了他的跳跃范围。因此,Bob使用其他石头作为中间站,通过一系列的小跳跃到达她。两块石头之间的青蛙距离被定义为两块石头之间所有可能路径上的最小必要跳跃距离,某条路径的必要跳跃距离即这条路径中单次跳跃的最远跳跃距离。你的工作是计算Alice和Bob石头之间的青蛙距离。

Input

多实例输入 
先输入一个整数n表示石头数量,当n等于0时结束。
接下来2-n+1行依次给出编号为1到n的石头的坐标xi , yi。
2 <= n <= 200 
0 <= xi , yi <= 1000


Output

先输出"Scenario #x", x代表样例序号。
接下来一行输出"Frog Distance = y", y代表你得到的答案。 
每个样例后输出一个空行。
(ps:wa有可能是精度问题,g++不对可以用c++尝试,都不对就是代码问题)


Sample Input

2
0 0
3 4 3
17 4
19 4
18 5 0

Sample Output

Scenario #1
Frog Distance = 5.000 Scenario #2
Frog Distance = 1.414

题目链接:
https://vjudge.net/problem/POJ-2253

我也是第一次做这样的题,用到一个算法

用Floyd算法求出两两最短路,再求出从每个点开始的最长路,最后从这n个最长路中求出最小的那个即为所求。

Floyd算法

https://www.cnblogs.com/sky-stars/p/11204139.html

AC代码:

#include <iostream>
#include <cstdio>
#include <fstream>
#include <algorithm>
#include <cmath>
#include <deque>
#include <vector>
#include <queue>
#include <string>
#include <cstring>
#include <map>
#include <stack>
#include <set>
#include <sstream>
#define mod 1000000007
#define eps 1e-6
#define ll long long
#define INF 0x3f3f3f3f
#define MEM(x,y) memset(x,y,sizeof(x))
#define Maxn 205
using namespace std;
struct node
{
double x,y;
};
node points[Maxn];
double path[Maxn][Maxn];//两点间的权值
int cases=;
int n;
//Floyd算法
void floyd()
{
for(int k=; k<=n; k++)
//主要针对由i到j的松弛,最终任意两点间的权值都会被分别松弛为最大跳的最小(但每个两点的最小不一定相同)
for(int i=; i<=n-; i++)
for(int j=i+; j<=n; j++)
//当边ik,kj的权值都小于ij时,则走i->k->j路线,否则走i->j路线
if(path[i][k]<path[i][j]&&path[k][j]<path[i][j])
//当走i->k->j路线时,选择max{ik,kj},只有选择最大跳才能保证连通
if(path[i][k]<path[k][j])
path[i][j]=path[j][i]=path[k][j];
else
path[i][j]=path[j][i]=path[i][k];
}
int main()
{
while(cin>>n,n)
{
for(int i=; i<=n; i++)
cin>>points[i].x>>points[i].y;
for(int i=; i<=n-; i++)
for(int j=i+; j<=n; j++)
{
//两点间的距离
double tx=points[j].x-points[i].x;
double ty=points[j].y-points[i].y;
path[i][j]=path[j][i]=sqrt(tx*tx+ty*ty);//双向性
} floyd();
cout<<"Scenario #"<<cases++<<endl;
printf("Frog Distance = %.3lf\n\n",path[][]);
}
}

【POJ - 2253】Frogger (Floyd算法)的更多相关文章

  1. POJ 2253 Frogger floyd算法

    题目:click here 题意: 给出两只青蛙的坐标A.B,和其他的n-2个坐标,任意两坐标间是双向连通的.显然从A到B存在至少一条的通路,每一条通路的元素都是这条通路中前后两个点的距离,这些距离中 ...

  2. POJ 2253 Frogger Floyd

    原题链接:http://poj.org/problem?id=2253 Frogger Time Limit: 1000MS   Memory Limit: 65536K Total Submissi ...

  3. poj 2253 Frogger dijkstra算法实现

    点击打开链接 Frogger Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 21653   Accepted: 7042 D ...

  4. 最短路(Floyd_Warshall) POJ 2253 Frogger

    题目传送门 /* 最短路:Floyd算法模板题 */ #include <cstdio> #include <iostream> #include <algorithm& ...

  5. POJ 2253 Frogger ,poj3660Cow Contest(判断绝对顺序)(最短路,floyed)

    POJ 2253 Frogger题目意思就是求所有路径中最大路径中的最小值. #include<iostream> #include<cstdio> #include<s ...

  6. POJ. 2253 Frogger (Dijkstra )

    POJ. 2253 Frogger (Dijkstra ) 题意分析 首先给出n个点的坐标,其中第一个点的坐标为青蛙1的坐标,第二个点的坐标为青蛙2的坐标.给出的n个点,两两双向互通,求出由1到2可行 ...

  7. POJ 2253 Frogger(dijkstra 最短路

    POJ 2253 Frogger Freddy Frog is sitting on a stone in the middle of a lake. Suddenly he notices Fion ...

  8. poj 2253 Frogger 最小瓶颈路(变形的最小生成树 prim算法解决(需要很好的理解prim))

    传送门: http://poj.org/problem?id=2253 Frogger Time Limit: 1000MS   Memory Limit: 65536K Total Submissi ...

  9. POJ 2253 Frogger

    题目链接:http://poj.org/problem?id=2253 Frogger Time Limit: 1000MS   Memory Limit: 65536K Total Submissi ...

  10. POJ 2253 Frogger(Dijkstra变形——最短路径最大权值)

    题目链接: http://poj.org/problem?id=2253 Description Freddy Frog is sitting on a stone in the middle of ...

随机推荐

  1. 浅谈.NET(C#)与Windows用户账户信息的获取

    原文:浅谈.NET(C#)与Windows用户账户信息的获取 目录 1. 用户账户名称 - 使用Environment类 2. 用户账户信息 - 使用WindowsIdentity和IdentityR ...

  2. 使用Microsoft Power BI进行基本的数据分析

    Power BI是微软开发的一款简单易用的数据可视化软件. 导入数据 使用Power BI的第一步是将数据导入到软件中.获取数据->更多,可以看到可使用多种数据源,甚至微软提供了一些联机的数据源 ...

  3. Delphi6/7 中XML 文档的应用

    XML文档是新一代的Web数据格式.它可以用树的形式储存一切数据.下面介绍一下TXMLDocument控件的一些用法:已定义:XMLDoc: TXMLDocument;EncoderMIME: TId ...

  4. PHP开发框架 Laravel

    Laravel 是一套简洁.优雅的PHP Web开发框架(PHP Web Framework).它可以让你从面条一样杂乱的代码中解脱出来:它可以帮你构建一个完美的网络APP,而且每行代码都可以简洁.富 ...

  5. RtlAdjustPrivilege进程提权,权限ID对照表

    SeCreateTokenPrivilege            0x2 SeAssignPrimaryTokenPrivilege     0x3 SeLockMemoryPrivilege    ...

  6. 类成员函数指针的特殊之处(成员函数指针不是指针,内含一个结构体,需要存储更多的信息才能知道自己是否virtual函数)

    下面讨论的都是类的非静态成员函数. 类成员函数指针的声明及调用: 1 2 3 4 5 6 7 //pr是指向Base类里的非静态成员函数的指针 //其行参为(int, int),返回值为void vo ...

  7. 第一式、单例模式-Singleton模式(创建型)

    一.简介 单例模式主要用的作用是用于保证程序运行中某个类只有一个实例,并提供一个全局入口点.单例模式(Singleton)为GOF阐述的标准24种设计模式中最简单的一个.但随着时间推移,GOF所阐述的 ...

  8. SPOJ130_Rent your airplane and make money_单调队列DP实现

    题意比较简单,状态转移方程也比较容易得出: f[i]=max{ f [ j ] }+p[i],(j的结束时间在i开始时间之前) 若i开始之前没有结束的j,则f[i]=p[i]; 因数据量太大(n< ...

  9. javaweb各种框架组合案例(三):maven+spring+springMVC+hibernate

    1.hibernate译为"越冬",指的是给java程序员带来春天,因为java程序员无需再关心各种sql了: 2.hibernate通过java类生成数据库表,通过操作对象来映射 ...

  10. 快速删除mysql表中的数据

    一.清空全部数据,不写日志,不可恢复,速度很快 truncate table 表名; 二.清空全部数据,写日志,可恢复,速度很慢 delete from 表名;