51nod 1060 最复杂的数(数论,反素数)
题目链接:https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1060
题解:可以去学习一下反素数。
#include <iostream>
#include <cstring>
#define inf 1000000000000000007
using namespace std;
typedef unsigned long long ull;
const int M = 1e6 + 10;
ull n , dp[M];
int prime[16] = {2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53};
void dfs(int deep , ull sum , int num) {
dp[num] = min(dp[num] , sum);
for(int i = 1 ; i <= 63 ; i++) {
if(sum > 1e18 / prime[deep]) break;
dfs(deep + 1 , sum * prime[deep] , num * (i + 1));
sum *= prime[deep];
}
}
int main() {
int t;
scanf("%d" , &t);
for(int i = 0 ; i < M ; i++) dp[i] = -inf;
dfs(0 , 1 , 1);
while(t--) {
scanf("%lld" , &n);
int ans;
for(int i = M - 1 ; i >= 1 ; i--) {
if(dp[i] <= n && dp[i] != 0) {ans = i; break;}
}
printf("%lld %d\n" , dp[ans] , ans);
}
return 0;
}
51nod 1060 最复杂的数(数论,反素数)的更多相关文章
- 51nod 1060 最复杂的数 反素数
1060 最复杂的数 基准时间限制:1 秒 空间限制:131072 KB 把一个数的约数个数定义为该数的复杂程度,给出一个n,求1-n中复杂程度最高的那个数. 例如:12的约数为:1 2 3 4 6 ...
- 51nod 1060 最复杂的数
把一个数的约数个数定义为该数的复杂程度,给出一个n,求1-n中复杂程度最高的那个数. 例如:12的约数为:1 2 3 4 6 12,共6个数,所以12的复杂程度是6.如果有多个数复杂度相等,输出最 ...
- zoj2562:搜索+数论(反素数)
题目大意:求n以内因子数量最多的数 n的范围为1e16 其实相当于求n以内最大的反素数... 由素数中的 算数基本原理 设d(a)为a的正因子的个数,则 d(n)=(a1+1)(a2+1)..... ...
- HDU 4542 小明系列故事——未知剩余系 (数论|反素数)
分析 kuangbin的blog已经讲的很好了,我做一点补充 1.当做x*y>z的比较时,如果x \(\ast\) y过大,可以写成x>z/y 2.分解质因数时选择用f[][0]保存质数, ...
- 1060 最复杂的数(反素数玄学dfs)
1060 最复杂的数 题目来源: Ural 1748 基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题 把一个数的约数个数定义为该数的复杂程度,给出一个n,求1-n中 ...
- 51nod 1061 最复杂的数V2
题目链接 51nod 1061 题面简述 求\([1, n]\)中约数个数最多的数. \(n \le 10^{200}\) 题解 首先,答案一定是一个反素数. 什么是反素数? 一个正整数\(x\)是反 ...
- 【BZOJ1053】[HAOI2007]反素数 (搜索+数论)
\([POI2002][HAOI2007]\)反素数 题目描述 对于任何正整数x,其约数的个数记作\(g(x)\).例如\(g(1)=1.g(6)=4\). 如果某个正整数x满足:\(g(x)> ...
- [luogu]P1463 [SDOI2005]反素数ant[dfs][数学][数论]
[luogu]P1463 [SDOI2005]反素数ant ——!x^n+y^n=z^n 题目描述 对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4. 如果某个正整数x满足: ...
- BZOJ1053 [HAOI2007]反素数ant 数论
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 传送门 - BZOJ1053 题目描述 对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4.如果某个正 ...
随机推荐
- 图片验证码+session
生成随机验证码 #!/usr/bin/env python # -*- coding:utf-8 -*- import random from PIL import Image, ImageDraw, ...
- 自己动手写Spring框架--IOC、MVC
对于一名Java开发人员,我相信没有人不知道 Spring 框架,而且也能够轻松就说出 Spring 的特性-- IOC.MVC.AOP.ORM(batis). 下面我想简单介绍一下我写的轻量级的 S ...
- NOIP 2018旅行题解
从佳木斯回来刷一刷去年没A的题 题目描述 小 Y 是一个爱好旅行的 OIer.她来到 X 国,打算将各个城市都玩一遍. 小Y了解到, X国的 nn 个城市之间有 mm 条双向道路.每条双向道路连接两个 ...
- 2019牛客多校训练第四场K.number(思维)
题目传送门 题意: 输入一个只包含数字的字符串,求出是300的倍数的子串的个数(不同位置的0.00.000等都算,并考虑前导零的情况). sample input: 600 1230003210132 ...
- javascript数组去重 js数组去重
数组去重的方法 一.利用ES6 Set去重(ES6中最常用) function unique (arr) { return Array.from(new Set(arr)) } var arr = [ ...
- Opengl_入门学习分享和记录_02_渲染管线(一)顶点着色器&片段着色器
写在前面的废话:今天俺又来了哈哈,真的好棒棒! 今天的内容:之前我们大概描述了,我们自己定义的顶点坐标是如何被加载到GPU之中,并且介绍了顶点缓冲对象VBO用于管理这一块内存.今天开始详细分析它的具体 ...
- echarts3.x遇到的坑
此文章用来记录echarts3.x遇到的坑,方便以后自己不再犯. 1.柱形图设置了yAxis.splitArea.show=true,后面设置的splitLine就会变不可见了.也没在官方文档中找到说 ...
- 配置Oracle透明网关用以连接 SQLServer经验总结
一.情景介绍 业务中设计两个不同的系统,系统1和系统2,两个系统分别使用的是Oracle和SQLServer数据库.现需要在系统1的数据库中直接查询系统2数据库的数据.即在Oracle中执行SQL ...
- 对已经存在的hbase表修改压缩方式
业务上可能会遇到这种情况,在最初创建hbase表时候,未指定压缩方式,当数据导入之后,由rowkey带来的数据膨胀导致hdfs上的数据大小远远大于原始数据大小.所以这时候可能就不得不考虑使用压缩,但是 ...
- linux下python中文乱码解决方案
1. 场景描述 linux服务器下安装了Anaconda3,执行Pyhton的K-means算法,结果出现如下图的中文字符乱码.上次已经解决了,忘记记录解决流程了,这次配置了一台新的服务器,又出现,默 ...