题目链接:https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1060

题解:可以去学习一下反素数。

#include <iostream>
#include <cstring>
#define inf 1000000000000000007
using namespace std;
typedef unsigned long long ull;
const int M = 1e6 + 10;
ull n , dp[M];
int prime[16] = {2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53};
void dfs(int deep , ull sum , int num) {
dp[num] = min(dp[num] , sum);
for(int i = 1 ; i <= 63 ; i++) {
if(sum > 1e18 / prime[deep]) break;
dfs(deep + 1 , sum * prime[deep] , num * (i + 1));
sum *= prime[deep];
}
}
int main() {
int t;
scanf("%d" , &t);
for(int i = 0 ; i < M ; i++) dp[i] = -inf;
dfs(0 , 1 , 1);
while(t--) {
scanf("%lld" , &n);
int ans;
for(int i = M - 1 ; i >= 1 ; i--) {
if(dp[i] <= n && dp[i] != 0) {ans = i; break;}
}
printf("%lld %d\n" , dp[ans] , ans);
}
return 0;
}

51nod 1060 最复杂的数(数论,反素数)的更多相关文章

  1. 51nod 1060 最复杂的数 反素数

    1060 最复杂的数 基准时间限制:1 秒 空间限制:131072 KB 把一个数的约数个数定义为该数的复杂程度,给出一个n,求1-n中复杂程度最高的那个数. 例如:12的约数为:1 2 3 4 6 ...

  2. 51nod 1060 最复杂的数

    把一个数的约数个数定义为该数的复杂程度,给出一个n,求1-n中复杂程度最高的那个数.   例如:12的约数为:1 2 3 4 6 12,共6个数,所以12的复杂程度是6.如果有多个数复杂度相等,输出最 ...

  3. zoj2562:搜索+数论(反素数)

    题目大意:求n以内因子数量最多的数  n的范围为1e16 其实相当于求n以内最大的反素数... 由素数中的 算数基本原理 设d(a)为a的正因子的个数,则 d(n)=(a1+1)(a2+1)..... ...

  4. HDU 4542 小明系列故事——未知剩余系 (数论|反素数)

    分析 kuangbin的blog已经讲的很好了,我做一点补充 1.当做x*y>z的比较时,如果x \(\ast\) y过大,可以写成x>z/y 2.分解质因数时选择用f[][0]保存质数, ...

  5. 1060 最复杂的数(反素数玄学dfs)

    1060 最复杂的数 题目来源: Ural 1748 基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题 把一个数的约数个数定义为该数的复杂程度,给出一个n,求1-n中 ...

  6. 51nod 1061 最复杂的数V2

    题目链接 51nod 1061 题面简述 求\([1, n]\)中约数个数最多的数. \(n \le 10^{200}\) 题解 首先,答案一定是一个反素数. 什么是反素数? 一个正整数\(x\)是反 ...

  7. 【BZOJ1053】[HAOI2007]反素数 (搜索+数论)

    \([POI2002][HAOI2007]\)反素数 题目描述 对于任何正整数x,其约数的个数记作\(g(x)\).例如\(g(1)=1.g(6)=4\). 如果某个正整数x满足:\(g(x)> ...

  8. [luogu]P1463 [SDOI2005]反素数ant[dfs][数学][数论]

    [luogu]P1463 [SDOI2005]反素数ant ——!x^n+y^n=z^n 题目描述 对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4. 如果某个正整数x满足: ...

  9. BZOJ1053 [HAOI2007]反素数ant 数论

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 传送门 - BZOJ1053 题目描述 对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4.如果某个正 ...

随机推荐

  1. Linux虚拟机所装软件说明

    Linux虚拟机所装软件说明 第一台虚拟机192.168.72.201 的 /usr/local/ 目录下放了一下软件: drwxr-xr-x 3 root root 4096 6月 14 19:16 ...

  2. spring boot 学习笔记之前言----环境搭建(如何用Eclipse配置Maven和Spring Boot)

    本篇文档来源:https://blog.csdn.net/a565649077/article/details/81042742 1.1 Eclipse准备 (1)     服务器上安装JDK和Mav ...

  3. Java | Map排序,工具类改进

    package util; import java.util.ArrayList; import java.util.Collections; import java.util.Comparator; ...

  4. Flink+Druid构建实时OLAP的探索

    场景 k12在线教育公司的业务场景中,有一些业务场景需要实时统计和分析,如分析在线上课老师数量.学生数量,实时销售额,课堂崩溃率等,需要实时反应上课的质量问题,以便于对整个公司的业务情况有大致的了解. ...

  5. Java 通过反射改变私有变量的值

    直接上代码 import java.lang.reflect.Field; public class Main {      public static void main(String[] args ...

  6. Spring IoC源码解析之invokeBeanFactoryPostProcessors

    一.Bean工厂的后置处理器 Bean工厂的后置处理器:BeanFactoryPostProcessor(触发时机:bean定义注册之后bean实例化之前)和BeanDefinitionRegistr ...

  7. 鲜为人知的maven标签解说

    目录 localRepository interactiveMode offline pluginGroups proxies servers mirrors profiles 使用场景 出现位置 激 ...

  8. viewpager+fragment结合

    public class MainActivity extends AppCompatActivity implements View.OnClickListener { private ViewPa ...

  9. Flink 源码解析 —— 深度解析 Flink 序列化机制

    Flink 序列化机制 https://t.zsxq.com/JaQfeMf 博客 1.Flink 从0到1学习 -- Apache Flink 介绍 2.Flink 从0到1学习 -- Mac 上搭 ...

  10. 开发规范 小白进阶 python代码规范化

    开发规范 软件开发,规范项目的目录结构,代码规范,遵循 PeP8规范等等,让你更加清晰的,合理开发 一功能分类(文件名) settings.py配置文件 配置文件放一些静态参数, 划归固定的路径,文件 ...