在系列开篇,我提到了四种将SQL SERVER数据同步到ES中的方案,本文将采用最简单的一种方案,即使用LastModifyTime来追踪DB中在最近一段时间发生了变更的数据。

安装Java

安装部分的官方文档在这里:https://www.elastic.co/guide/en/logstash/current/installing-logstash.html

可以直接查看官方文档。

我这里使用的还是之前文章中所述的CentOS来进行安装。

首先需要安装Java(万物源于Java)

输入命令找到的OpenJDK 1.8.X版本(截止我尝试时,在Java11上会有问题):

yum search java | grep -i --color JDK

使用Yum进行安装:

yum install java-1.8.0-openjdk

配置环境变量JAVA_HOME、CLASSPATH、PATH。

打开/etc/profile文件:

vi /etc/profile

将下面几行代码粘贴到该文件的最后:

--这句要自己到/usr/lib/jvm下面找对应的目录,不能直接copy

export JAVA_HOME=/usr/lib/jvm/java-1.8.0-openjdk-1.8.0.222.b10-0.el7_6.x86_64/
export CLASSPATH=.:$JAVA_HOME/jre/lib/rt.jar:$JAVA_HOME/lib/dt.jar:$JAVA_HOME/lib/tools.jar
export PATH=$PATH:$JAVA_HOME/bin

保存并关闭,然后执行下列命令让设置立即生效。

source /etc/profile

可以输入下面的命令查看是否已生效:

java –-version
echo $JAVA_HOME
echo $CLASSPATH
echo $PATH

安装LogStash

首先注册ELK官方的GPG-KEY:

然后cd /etc/yum.repos.d/文件夹下,创建一个logstash.repo文件,并将下面一段内容粘贴到该文件中保存:

[logstash-7.x]
name=Elastic repository for 7.x packages
baseurl=https://artifacts.elastic.co/packages/7.x/yum
gpgcheck=1
gpgkey=https://artifacts.elastic.co/GPG-KEY-elasticsearch
enabled=1
autorefresh=1
type=rpm-md

然后执行安装命令:

sudo yum install logstash

以上步骤可能比较慢,还有另外一种办法,就是通过下载来安装LogStash:

官方文档在这里:https://www.elastic.co/cn/downloads/logstash

首先在上面的链接中下载LogStash的tar.gz包,这个过程有可能也很慢,我的解决方案是在自己机器上使用迅雷进行下载,完事儿Copy到Linux服务器中。

下载完成后,执行解压操作:

sudo tar -xvf logstash-7.2.0.tar.gz

解压完成后,进入解压后的logstash-7.2.0文件夹。

接着我们安装Logstash-input-jdbc插件:

bin/logstash-plugin install logstash-input-jdbc

下载SQL SERVER jbdc组件,这里我们从微软官网下载:https://docs.microsoft.com/en-us/sql/connect/jdbc/download-microsoft-jdbc-driver-for-sql-server?view=sql-server-2017 ,当然这个链接只是目前的,如果你在尝试时这个链接失效了,那就自行百度搜索吧~

下载完成后,解压到logstash下面的lib目录下,这里我自己为了方便,把微软默认给jdbc外面包的一层语言名称的文件夹给去掉了。

接着,我们到/config文件夹,新建一个logstash.conf文件,内容大概如下:

下面的每一个参数含义都可以在官方文档中找到:

input {
jdbc {
jdbc_driver_library => "/usr/local/logstash-7.2.0/lib/mssql-jdbc-7.2.2/mssql-jdbc-7.2.2.jre8.jar" // 这里请灵活应变,能找到我们上一步下载的jdbc jar包即可
jdbc_driver_class => "com.microsoft.sqlserver.jdbc.SQLServerDriver" // 这个名字是固定的
jdbc_connection_string => "jdbc:sqlserver: //数据库ServerIP:1433;databaseName=数据库名;"
jdbc_user => "数据库账号"
jdbc_password => "数据库密码"
schedule => "* * * * *" // Corn 表达式,请自行百度写法
jdbc_default_timezone => "Asia/Shanghai"
jdbc_page_size => "" // 每一批传输的数量
record_last_run => "true" //是否保存状态
use_column_value => "true" //设置为时true,使用定义的 tracking_column值作为:sql_last_value。设置为时false,:sql_last_value反映上次执行查询的时间。
tracking_column => "LastModificationTime" //配合use_column_value使用
last_run_metadata_path => "/usr/opt/logstash/config/last_id" //记录:sql_last_value的文件
lowercase_column_names => "false" //将DB中的列名自动转换为小写
tracking_column_type => "timestamp" //tracking_column的数据类型,只能是numberic和timestamp
clean_run => "false" //是否应保留先前的运行状态,其实我也不知道这个字段干啥用的~~
statement => "SELECT * FROM 表 WITH(NOLOCK) WHERE LastModificationTime > :sql_last_value" //从DB中抓数据的SQL脚本
}
}
output {
elasticsearch {
index => "test" //ES集群的索引名称
document_id => "%{Id}" //Id是表里面的主键,为了拿这个主键在ES中生成document ID
hosts => ["http://192.168.154.135:9200"]// ES集群的地址
}
}

上面的被注释搞的乱糟糟的,给你们一个可以复制的版本吧:

input {
jdbc {
jdbc_driver_library => "/usr/local/logstash-7.2.0/lib/mssql-jdbc-7.2.2/mssql-jdbc-7.2.2.jre8.jar"
jdbc_driver_class => "com.microsoft.sqlserver.jdbc.SQLServerDriver"
jdbc_connection_string => "jdbc:sqlserver://SERVER_IP:1433;databaseName=DBName;"
jdbc_user => "xxx"
jdbc_password => "password"
schedule => "* * * * *"
jdbc_default_timezone => "Asia/Shanghai"
jdbc_page_size => "50000"
record_last_run => "true"
use_column_value => "true"
tracking_column => "LastModificationTime"
last_run_metadata_path => "/usr/local/logstash-7.2.0/config/last_id"
lowercase_column_names => "false"
tracking_column_type => "timestamp"
clean_run => "false"
statement => "SELECT * FROM xxx WITH(NOLOCK) WHERE LastModificationTime > :sql_last_value"
}
}
output {
elasticsearch {
index => "item"
document_id => "%{Id}"
hosts => ["http://ES集群IP:9200"]
}
}

Logstash 整体思路

回头来说一下这个LogStash的整体思路吧,其实我的理解,LogStash就是一个数据搬运工,他的搬运数据,分为三个大的阶段:

  1. 读取数据(input)
  2. 过滤数据(filter)
  3. 输出数据(output)

对应的官方文档:https://www.elastic.co/guide/en/logstash/current/pipeline.html

而这每一个阶段,都是通过一些插件来实现的,比如在上述的配置文件中,我们有:

  • 读取数据即input部分,这部分由于我们是需要从数据库读取数据,所以使用了一个可以执行SQL语句的jdbc-input插件,这里如果我们的数据源是其他的部分,就需要使用其他的一些插件来实现。
  • 也有输出数据部分,这部分我们是将数据写入到ElasticSearch,所以我们使用了一个elasticsearch-output插件。这里也可以将数据写入到kafka等其他的一些产品中,也是需要一些插件即可搞定。
  • 可以发现我们上面的部分没有涉及到filter插件,其实如果我们想对数据做一些过滤、规范化处理等,都可以使用filter插件来进行处理,具体的还需要进一步去探索啦~

执行数据同步

剩下的部分就简单了,切换目录到logstash的目录下,执行命令:

bin/logstash -f config/logstash.conf

最后执行的效果图大概如下:

可以使用Elasticsearch-Head等插件来查看是否同步正常:

大概就是这样啦,后续我这边会继续尝试使用其他方式来进行数据同步,欢迎大家关注~

SQL数据同步到ElasticSearch(三)- 使用Logstash+LastModifyTime同步数据的更多相关文章

  1. 一、JDBC的概述 二、通过JDBC实现对数据的CRUD操作 三、封装JDBC访问数据的工具类 四、通过JDBC实现登陆和注册 五、防止SQL注入

    一.JDBC的概述###<1>概念 JDBC:java database connection ,java数据库连接技术 是java内部提供的一套操作数据库的接口(面向接口编程),实现对数 ...

  2. 几篇关于MySQL数据同步到Elasticsearch的文章---第三篇:logstash_output_kafka:Mysql同步Kafka深入详解

    文章转载自: https://mp.weixin.qq.com/s?__biz=MzI2NDY1MTA3OQ==&mid=2247484411&idx=1&sn=1f5a371 ...

  3. 几篇关于MySQL数据同步到Elasticsearch的文章---第二篇:canal 实现Mysql到Elasticsearch实时增量同步

    文章转载自: https://mp.weixin.qq.com/s?__biz=MzI2NDY1MTA3OQ==&mid=2247484377&idx=1&sn=199bc88 ...

  4. Logstash学习之路(四)使用Logstash将mysql数据导入elasticsearch(单表同步、多表同步、全量同步、增量同步)

    一.使用Logstash将mysql数据导入elasticsearch 1.在mysql中准备数据: mysql> show tables; +----------------+ | Table ...

  5. 几篇关于MySQL数据同步到Elasticsearch的文章---第五篇:logstash-input-jdbc实现mysql 与elasticsearch实时同步深入详解

    文章转载自: https://blog.csdn.net/laoyang360/article/details/51747266 引言: elasticsearch 的出现使得我们的存储.检索数据更快 ...

  6. 几篇关于MySQL数据同步到Elasticsearch的文章---第一篇:Debezium实现Mysql到Elasticsearch高效实时同步

    文章转载自: https://mp.weixin.qq.com/s?__biz=MzI2NDY1MTA3OQ==&mid=2247484358&idx=1&sn=3a78347 ...

  7. ElasticSearch(1)---Mysql同步数据到ElSearch

    ElasticSearch同步Mysql 先讲项目需求:对于资讯模块添加搜索功能 这个搜索功能我就是采用ElasticSearch实现的,功能刚实现完,所以写这篇博客做个记录,让自己在记录下整个步骤和 ...

  8. 基于nodejs将mongodb的数据实时同步到elasticsearch

    一.前言 因公司需要选用elasticsearch做全文检索,持久化存储选用的是mongodb,但是希望mongodb里面的数据发生改变可以实时同步到elasticsearch上,一开始主要使用ela ...

  9. asp.net core microservices 架构之分布式自动计算(三)-kafka日志同步至elasticsearch和kibana展示

    一 kafka consumer准备 前面的章节进行了分布式job的自动计算的概念讲解以及实践.上次分布式日志说过日志写进kafka,是需要进行处理,以便合理的进行展示,分布式日志的量和我们对日志的重 ...

随机推荐

  1. STL函数static void (* set_malloc_handler(void (*f)()))()与函数指针解析

    在C++ STL的SGI实现版本中,一级空间配置器class __malloc_alloc_template中有一个静态函数的实现如下: static void (*set_malloc_handle ...

  2. Hadoop 三剑客之 —— 分布式计算框架 MapReduce

    一.MapReduce概述 二.MapReduce编程模型简述 三.combiner & partitioner 四.MapReduce词频统计案例         4.1 项目简介      ...

  3. 从电子游戏到DevOps

    在一个项目团队中,开发与运维之间的关系像极了知名大型游戏<刺客信条>里的故事:开发就是追求自由的刺客联盟——我喜欢用各种新颖技术手段去满足用户爸爸那些花里胡哨的需求,你别管那技术好不好用, ...

  4. Java入门网络编程-使用UDP通信

    程序说明: 以下代码,利用java的网络编程,使用UDP通信作为通信协议,描述了一个简易的多人聊天程序,此程序可以使用公网或者是局域网进行聊天,要求有一台服务器.程序一共分为2个包,第一个包:udp, ...

  5. Web项目性能测试结果分析

    1.测试结果分析 LoadRunner性能测试结果分析是个复杂的过程,通常可以从结果摘要.并发数.平均事务响应时间.每秒点击数.业务成功率.系统资源.网页细分图.Web服务器资源.数据库服务器资源等几 ...

  6. http-get调用接口简单代码

    一.简单便捷的httpget调用接口,并且返回接口数据1.导入相应的jar包: 2.代码如下: HttpGet get=null; try {HttpClient httpClient = new D ...

  7. scala class中孤立代码块揭秘

    在 scala class中,经常会有很多的代码块需要执行,它们不在任何方法中,只是孤立的代码块. 案例: class Tester(val name:String, num:Integer) { p ...

  8. 【简易bat脚本】启动java程序

    前置条件:path中添加了JAVAHOME配置了java环境变量 1.新建txt文本文件 2.粘贴以下内容 @echo off set path=%path%;.;java -classpath &q ...

  9. 【时间工具】整理下java时间换算专题

    首先总结了一下日期转换基础,最常用的两个工具类Date与calender,转换方法如下: package com.zzt.spider; import java.text.SimpleDateForm ...

  10. redhat6.0下配置DNS

    最近操作系统要结课,老师要求在redhat上配置各种服务器角色,包括dhcp.ftp.web.dns.前三个都还好,但就dns,被折磨的死去活来的,真让人头大.还好在同学的帮助下最后配置成功,实现了正 ...