本文首发于个人博客https://kezunlin.me/post/b90033a9/,欢迎阅读!

Install and Configure Caffe on ubuntu 16.04

Series

Guide

requirements:

  • NVIDIA driver 396.54
  • CUDA 8.0 + cudnn 6.0.21
  • CUDA 9.2 +cudnn 7.1.4
  • opencv 3.1.0 --->3.3.0
  • python 2.7 + numpy 1.15.1
  • python 3.5.2 + numpy 1.16.2
  • protobuf 3.6.1 (static)
  • caffe latest

默认的protobuf,2.6.1测试通过。

此处,使用最新的3.6.1 也可以,编译caffe需要加上-std=c++11

install CUDA + cudnn

see install and configure cuda 9.2 with cudnn 7.1 on ubuntu 16.04

tips: we need to recompile caffe with cudnn 7.1

before we compile caffe, move caffe/python/caffe/selective_search_ijcv_with_python folder outside caffe source folder, otherwise error occurs.

install protobuf

see Part 1: compile protobuf-cpp on ubuntu 16.04

which protoc
/usr/local/bin/protoc protoc --version
libprotoc 3.6.1

caffe使用static的libprotoc 3.6.1

install opencv

see compile opencv on ubuntu 16.04

 which opencv_version
/usr/local/bin/opencv_version opencv_version
3.3.0

python

python --version
Python 2.7.12

check numpy version

import numpy
numpy.__version__
'1.15.1' import numpy
import inspect
inspect.getfile(numpy)
'/usr/local/lib/python2.7/dist-packages/numpy/__init__.pyc'

compile caffe

clone repo

git clone https://github.com/BVLC/caffe.git
cd caffe

update repo

update at 20180822.

if you change your local Makefile and git pull origin master merge conflict, solution

git checkout HEAD Makefile
git pull origin master

configure

mkdir build && cd build && cmake-gui ..

cmake-gui options

USE_CUDNN ON
USE_OPENCV ON
Build_python ON
Build_python_layer ON BLAS atlas
CMAKE_CXX_FLGAS -std=c++11 CMAKE_INSTALL_PREFIX /home/kezunlin/program/caffe/build/install

使用-std=c++11

configure output

Dependencies:
BLAS : Yes (Atlas)
Boost : Yes (ver. 1.66)
glog : Yes
gflags : Yes
protobuf : Yes (ver. 3.6.1)
lmdb : Yes (ver. 0.9.17)
LevelDB : Yes (ver. 1.18)
Snappy : Yes (ver. 1.1.3)
OpenCV : Yes (ver. 3.1.0)
CUDA : Yes (ver. 9.2) NVIDIA CUDA:
Target GPU(s) : Auto
GPU arch(s) : sm_61
cuDNN : Yes (ver. 7.1.4) Python:
Interpreter : /usr/bin/python2.7 (ver. 2.7.12)
Libraries : /usr/lib/x86_64-linux-gnu/libpython2.7.so (ver 2.7.12)
NumPy : /usr/lib/python2.7/dist-packages/numpy/core/include (ver 1.51.1) Documentaion:
Doxygen : /usr/bin/doxygen (1.8.11)
config_file : /home/kezunlin/program/caffe/.Doxyfile Install:
Install path : /home/kezunlin/program/caffe-wy/build/install Configuring done

we can also use python3.5 and numpy 1.16.2

Python:
Interpreter : /usr/bin/python3 (ver. 3.5.2)
Libraries : /usr/lib/x86_64-linux-gnu/libpython3.5m.so (ver 3.5.2)
NumPy : /home/kezunlin/.local/lib/python3.5/site-packages/numpy/core/include (ver 1.16.2)

use -std=c++11, otherwise errors occur

make -j8
[ 1%] Running C++/Python protocol buffer compiler on /home/kezunlin/program/caffe-wy/src/caffe/proto/caffe.proto
Scanning dependencies of target caffeproto
[ 1%] Building CXX object src/caffe/CMakeFiles/caffeproto.dir/__/__/include/caffe/proto/caffe.pb.cc.o
In file included from /usr/include/c++/5/mutex:35:0,
from /usr/local/include/google/protobuf/stubs/mutex.h:33,
from /usr/local/include/google/protobuf/stubs/common.h:52,
from /home/kezunlin/program/caffe-wy/build/include/caffe/proto/caffe.pb.h:9,
from /home/kezunlin/program/caffe-wy/build/include/caffe/proto/caffe.pb.cc:4:
/usr/include/c++/5/bits/c++0x_warning.h:32:2: error: #error This file requires compiler and library support for the ISO C++ 2011 standard. This support must be enabled with the -std=c++11 or -std=gnu++11 compiler options.
#error This file requires compiler and library support \

fix gcc error

vim /usr/local/cuda/include/host_config.h

# 将其中的第115行注释掉:
#error-- unsupported GNU version! gcc versions later than 4.9 are not supported!
======>
//#error-- unsupported GNU version! gcc versions later than 4.9 are not supported!

fix gflags error

  • caffe/include/caffe/common.hpp
  • caffe/examples/mnist/convert_mnist_data.cpp

Comment out the ifndef

// #ifndef GFLAGS_GFLAGS_H_
namespace gflags = google;
// #endif // GFLAGS_GFLAGS_H_

compile

make clean
make -j8
make pycaffe

output

[  1%] Running C++/Python protocol buffer compiler on /home/kezunlin/program/caffe-wy/src/caffe/proto/caffe.proto
Scanning dependencies of target caffeproto
[ 1%] Building CXX object src/caffe/CMakeFiles/caffeproto.dir/__/__/include/caffe/proto/caffe.pb.cc.o
[ 1%] Linking CXX static library ../../lib/libcaffeproto.a
[ 1%] Built target caffeproto

libcaffeproto.a static library

install

make install

ls build/install
bin include lib python share

will install to build/install folder

ls build/install/lib

libcaffeproto.a  libcaffe.so  libcaffe.so.1.0.0

advanced

  • INTERFACE_INCLUDE_DIRECTORIES
  • INTERFACE_LINK_LIBRARIES

Target "caffe" has an INTERFACE_LINK_LIBRARIES property which differs from its LINK_INTERFACE_LIBRARIES properties.

Play with Caffe

python caffe

fix python caffe

fix ipython 6.1 version conflict

vim caffe/python/requirements.txt

ipython>=3.0.0
====>
ipython==5.4.1

reinstall ipython

pip install -r requirements.txt

cd caffe/python
python
>>>import caffe

python draw net

sudo apt-get install graphviz
sudo pip install theano=0.9 # for theano d3viz
sudo pip install pydot==1.1.0
sudo pip install pydot-ng # other usefull tools
sudo pip install jupyter
sudo pip install seaborn

we need to install graphviz, otherwise we get ERROR:"dot" not found in path

draw net

cd $CAFFE_HOME
./python/draw_net.py ./examples/mnist/lenet.prototxt ./examples/mnist/lenet.png eog ./examples/mnist/lenet.png

cpp caffe

train net

cd caffe
./examples/mnist/create_mnist.sh
./examples/mnist/train_lenet.sh cat ./examples/mnist/train_lenet.sh ./build/tools/caffe train --solver=examples/mnist/lenet_solver.prototxt $@

output results

I0912 15:57:28.812655 14094 solver.cpp:327] Iteration 10000, loss = 0.00272129
I0912 15:57:28.812675 14094 solver.cpp:347] Iteration 10000, Testing net (#0)
I0912 15:57:28.891481 14100 data_layer.cpp:73] Restarting data prefetching from start.
I0912 15:57:28.893678 14094 solver.cpp:414] Test net output #0: accuracy = 0.9904
I0912 15:57:28.893707 14094 solver.cpp:414] Test net output #1: loss = 0.0276084 (* 1 = 0.0276084 loss)
I0912 15:57:28.893714 14094 solver.cpp:332] Optimization Done.
I0912 15:57:28.893719 14094 caffe.cpp:250] Optimization Done.

tips, for caffe, errors because no imdb data.

I0417 13:28:17.764714 35030 layer_factory.hpp:77] Creating layer mnist
F0417 13:28:17.765067 35030 db_lmdb.hpp:15] Check failed: mdb_status == 0 (2 vs. 0) No such file or directory
---------------------

upgrade net

./tools/upgrade_net_proto_text  old.prototxt new.prototxt
./tools/upgrade_net_proto_binary old.caffemodel new.caffemodel

caffe time

  • yolov3

    ./build/tools/caffe time --model='det/yolov3/yolov3.prototxt' --iterations=100 --gpu=0
    
    I0313 10:15:41.888208 12527 caffe.cpp:408] Average Forward pass: 49.7012 ms.
    I0313 10:15:41.888213 12527 caffe.cpp:410] Average Backward pass: 84.946 ms.
    I0313 10:15:41.888248 12527 caffe.cpp:412] Average Forward-Backward: 134.85 ms.
  • yolov3 autotrain

    ./build/tools/caffe time --model='det/autotrain/yolo3-autotrain-mbn-416-5c.prototxt' --iterations=100 --gpu=0
    
    I0313 10:19:27.283625 12894 caffe.cpp:408] Average Forward pass: 38.4823 ms.
    I0313 10:19:27.283630 12894 caffe.cpp:410] Average Backward pass: 74.1656 ms.
    I0313 10:19:27.283638 12894 caffe.cpp:412] Average Forward-Backward: 112.732 ms.

Example

Caffe Classifier

#include <caffe/caffe.hpp>
#ifdef USE_OPENCV
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#endif // USE_OPENCV
#include <algorithm>
#include <iosfwd>
#include <memory>
#include <string>
#include <utility>
#include <vector> #ifdef USE_OPENCV
using namespace caffe; // NOLINT(build/namespaces)
using std::string; /* Pair (label, confidence) representing a prediction. */
typedef std::pair<string, float> Prediction; class Classifier {
public:
Classifier(const string& model_file,
const string& trained_file,
const string& mean_file,
const string& label_file); std::vector<Prediction> Classify(const cv::Mat& img, int N = 5); private:
void SetMean(const string& mean_file); std::vector<float> Predict(const cv::Mat& img); void WrapInputLayer(std::vector<cv::Mat>* input_channels); void Preprocess(const cv::Mat& img,
std::vector<cv::Mat>* input_channels); private:
shared_ptr<Net<float> > net_;
cv::Size input_geometry_;
int num_channels_;
cv::Mat mean_;
std::vector<string> labels_;
}; Classifier::Classifier(const string& model_file,
const string& trained_file,
const string& mean_file,
const string& label_file) {
#ifdef CPU_ONLY
Caffe::set_mode(Caffe::CPU);
#else
Caffe::set_mode(Caffe::GPU);
#endif /* Load the network. */
net_.reset(new Net<float>(model_file, TEST));
net_->CopyTrainedLayersFrom(trained_file); CHECK_EQ(net_->num_inputs(), 1) << "Network should have exactly one input.";
CHECK_EQ(net_->num_outputs(), 1) << "Network should have exactly one output."; Blob<float>* input_layer = net_->input_blobs()[0];
num_channels_ = input_layer->channels();
CHECK(num_channels_ == 3 || num_channels_ == 1)
<< "Input layer should have 1 or 3 channels.";
input_geometry_ = cv::Size(input_layer->width(), input_layer->height()); /* Load the binaryproto mean file. */
SetMean(mean_file); /* Load labels. */
std::ifstream labels(label_file.c_str());
CHECK(labels) << "Unable to open labels file " << label_file;
string line;
while (std::getline(labels, line))
labels_.push_back(string(line)); Blob<float>* output_layer = net_->output_blobs()[0];
CHECK_EQ(labels_.size(), output_layer->channels())
<< "Number of labels is different from the output layer dimension.";
} static bool PairCompare(const std::pair<float, int>& lhs,
const std::pair<float, int>& rhs) {
return lhs.first > rhs.first;
} /* Return the indices of the top N values of vector v. */
static std::vector<int> Argmax(const std::vector<float>& v, int N) {
std::vector<std::pair<float, int> > pairs;
for (size_t i = 0; i < v.size(); ++i)
pairs.push_back(std::make_pair(v[i], i));
std::partial_sort(pairs.begin(), pairs.begin() + N, pairs.end(), PairCompare); std::vector<int> result;
for (int i = 0; i < N; ++i)
result.push_back(pairs[i].second);
return result;
} /* Return the top N predictions. */
std::vector<Prediction> Classifier::Classify(const cv::Mat& img, int N) {
std::vector<float> output = Predict(img); N = std::min<int>(labels_.size(), N);
std::vector<int> maxN = Argmax(output, N);
std::vector<Prediction> predictions;
for (int i = 0; i < N; ++i) {
int idx = maxN[i];
predictions.push_back(std::make_pair(labels_[idx], output[idx]));
} return predictions;
} /* Load the mean file in binaryproto format. */
void Classifier::SetMean(const string& mean_file) {
BlobProto blob_proto;
ReadProtoFromBinaryFileOrDie(mean_file.c_str(), &blob_proto); /* Convert from BlobProto to Blob<float> */
Blob<float> mean_blob;
mean_blob.FromProto(blob_proto);
CHECK_EQ(mean_blob.channels(), num_channels_)
<< "Number of channels of mean file doesn't match input layer."; /* The format of the mean file is planar 32-bit float BGR or grayscale. */
std::vector<cv::Mat> channels;
float* data = mean_blob.mutable_cpu_data();
for (int i = 0; i < num_channels_; ++i) {
/* Extract an individual channel. */
cv::Mat channel(mean_blob.height(), mean_blob.width(), CV_32FC1, data);
channels.push_back(channel);
data += mean_blob.height() * mean_blob.width();
} /* Merge the separate channels into a single image. */
cv::Mat mean;
cv::merge(channels, mean); /* Compute the global mean pixel value and create a mean image
* filled with this value. */
cv::Scalar channel_mean = cv::mean(mean);
mean_ = cv::Mat(input_geometry_, mean.type(), channel_mean);
} std::vector<float> Classifier::Predict(const cv::Mat& img) {
Blob<float>* input_layer = net_->input_blobs()[0];
input_layer->Reshape(1, num_channels_,
input_geometry_.height, input_geometry_.width);
/* Forward dimension change to all layers. */
net_->Reshape(); std::vector<cv::Mat> input_channels;
WrapInputLayer(&input_channels); Preprocess(img, &input_channels); net_->Forward(); /* Copy the output layer to a std::vector */
Blob<float>* output_layer = net_->output_blobs()[0];
const float* begin = output_layer->cpu_data();
const float* end = begin + output_layer->channels();
return std::vector<float>(begin, end);
} /* Wrap the input layer of the network in separate cv::Mat objects
* (one per channel). This way we save one memcpy operation and we
* don't need to rely on cudaMemcpy2D. The last preprocessing
* operation will write the separate channels directly to the input
* layer. */
void Classifier::WrapInputLayer(std::vector<cv::Mat>* input_channels) {
Blob<float>* input_layer = net_->input_blobs()[0]; int width = input_layer->width();
int height = input_layer->height();
float* input_data = input_layer->mutable_cpu_data();
for (int i = 0; i < input_layer->channels(); ++i) {
cv::Mat channel(height, width, CV_32FC1, input_data);
input_channels->push_back(channel);
input_data += width * height;
}
} void Classifier::Preprocess(const cv::Mat& img,
std::vector<cv::Mat>* input_channels) {
/* Convert the input image to the input image format of the network. */
cv::Mat sample;
if (img.channels() == 3 && num_channels_ == 1)
cv::cvtColor(img, sample, cv::COLOR_BGR2GRAY);
else if (img.channels() == 4 && num_channels_ == 1)
cv::cvtColor(img, sample, cv::COLOR_BGRA2GRAY);
else if (img.channels() == 4 && num_channels_ == 3)
cv::cvtColor(img, sample, cv::COLOR_BGRA2BGR);
else if (img.channels() == 1 && num_channels_ == 3)
cv::cvtColor(img, sample, cv::COLOR_GRAY2BGR);
else
sample = img; cv::Mat sample_resized;
if (sample.size() != input_geometry_)
cv::resize(sample, sample_resized, input_geometry_);
else
sample_resized = sample; cv::Mat sample_float;
if (num_channels_ == 3)
sample_resized.convertTo(sample_float, CV_32FC3);
else
sample_resized.convertTo(sample_float, CV_32FC1); cv::Mat sample_normalized;
cv::subtract(sample_float, mean_, sample_normalized); /* This operation will write the separate BGR planes directly to the
* input layer of the network because it is wrapped by the cv::Mat
* objects in input_channels. */
cv::split(sample_normalized, *input_channels); CHECK(reinterpret_cast<float*>(input_channels->at(0).data)
== net_->input_blobs()[0]->cpu_data())
<< "Input channels are not wrapping the input layer of the network.";
} int main(int argc, char** argv) {
if (argc != 6) {
std::cerr << "Usage: " << argv[0]
<< " deploy.prototxt network.caffemodel"
<< " mean.binaryproto labels.txt img.jpg" << std::endl;
return 1;
} ::google::InitGoogleLogging(argv[0]); string model_file = argv[1];
string trained_file = argv[2];
string mean_file = argv[3];
string label_file = argv[4];
Classifier classifier(model_file, trained_file, mean_file, label_file); string file = argv[5]; std::cout << "---------- Prediction for "
<< file << " ----------" << std::endl; cv::Mat img = cv::imread(file, -1);
CHECK(!img.empty()) << "Unable to decode image " << file;
std::vector<Prediction> predictions = classifier.Classify(img); /* Print the top N predictions. */
for (size_t i = 0; i < predictions.size(); ++i) {
Prediction p = predictions[i];
std::cout << std::fixed << std::setprecision(4) << p.second << " - \""
<< p.first << "\"" << std::endl;
}
}
#else
int main(int argc, char** argv) {
LOG(FATAL) << "This example requires OpenCV; compile with USE_OPENCV.";
}
#endif // USE_OPENCV

CMakeLists.txt

find_package(OpenCV REQUIRED)

set(Caffe_DIR "/home/kezunlin/program/caffe-wy/build/install/share/Caffe")  # caffe-wy caffe

# for CaffeConfig.cmake/ caffe-config.cmake
find_package(Caffe)
# offical caffe : There is no Caffe_INCLUDE_DIRS and Caffe_DEFINITIONS
# refinedet caffe: OK. add_definitions(${Caffe_DEFINITIONS}) MESSAGE( [Main] " Caffe_INCLUDE_DIRS = ${Caffe_INCLUDE_DIRS}")
MESSAGE( [Main] " Caffe_DEFINITIONS = ${Caffe_DEFINITIONS}")
MESSAGE( [Main] " Caffe_LIBRARIES = ${Caffe_LIBRARIES}") # caffe
MESSAGE( [Main] " Caffe_CPU_ONLY = ${Caffe_CPU_ONLY}")
MESSAGE( [Main] " Caffe_HAVE_CUDA = ${Caffe_HAVE_CUDA}")
MESSAGE( [Main] " Caffe_HAVE_CUDNN = ${Caffe_HAVE_CUDNN}") include_directories(${Caffe_INCLUDE_DIRS}) target_link_libraries(demo
${OpenCV_LIBS}
${Caffe_LIBRARIES}
)

run

ldd demo

if error occurs:

libcaffe.so.1.0.0 => not found

fix

vim .bashrc

# for caffe
export LD_LIBRARY_PATH=/home/kezunlin/program/caffe-wy/build/install/lib:$LD_LIBRARY_PATH

Reference

History

  • 20180807: created.
  • 20180822: update cmake-gui for caffe

Copyright

ubuntu 16.04源码编译和配置caffe详细教程 | Install and Configure Caffe on ubuntu 16.04的更多相关文章

  1. [Part 3] 在Ubuntu 16.04源码编译PCL 1.8.1支持VTK和QT

    本文首发于个人博客https://kezunlin.me/post/137aa5fc/,欢迎阅读! Part-3: Install and Configure PCL 1.8.1 with vtk q ...

  2. [笔记] Ubuntu 18.04源码编译安装OpenCV 4.0流程

    标准常规安装方法安装的OpenCV版本比较低,想尝鲜使用4.0版本,只好源码安装. 安装环境 OS:Ubuntu 18.04 64 bit 显卡:NVidia GTX 1080 CUDA:10.0 c ...

  3. ubuntu 14.04 源码编译postgresql

    环境 ubuntu 14.04 桌面版 postgresql 源码下载链接,本教程是使用postgresql 9.3.4 进行编译的 http://www.postgresql.org/ftp/sou ...

  4. 编译Android 4.4.4 r1的源码刷Nexus 5手机详细教程

    本文博客地址:http://blog.csdn.net/qq1084283172/article/details/54562606 网上关于编译Android源码的教程已经很多了,但是讲怎么编译And ...

  5. windows 10安装和配置caffe教程 | Install and Configure Caffe on windows 10

    本文首发于个人博客https://kezunlin.me/post/1739694c/,欢迎阅读! Install and Configure Caffe on windows 10 Part 1: ...

  6. Ubuntu 16.04 源码编译安装PHP7+swoole

    备注: Ubuntu 16.04 Server 版安装过程图文详解 Ubuntu16镜像地址: 链接:https://pan.baidu.com/s/1XTVS6BdwPPmSsF-cYF6B7Q 密 ...

  7. Ubuntu 16.04 源码编译安装PHP7

    一.下载PHP7的最新版源码 php7.0.9  下载地址 http://php.net/get/php-7.0.9.tar.gz/from/a/mirror 二.解压 tar -zxf /tmp/p ...

  8. Ubuntu 16.04源码编译安装nginx 1.10.0

    一.下载相关的依赖库 pcre 下载地址 http://120.52.73.43/jaist.dl.sourceforge.net/project/pcre/pcre/8.38/pcre-8.38.t ...

  9. ubuntu 14.04 源码编译mysql-5.7.17

    环境为 Ubuntu 12.04 64 位的桌面版 编译的mysql 版本为 5.7.18 首先需要安装一下依赖包 sudo apt-get install libncurses5-dev cmake ...

随机推荐

  1. ESP8266开发之旅 网络篇④ Station——ESP8266WiFiSTA库的使用

    1. 前言     在前面的篇章中,博主给大家讲解了ESP8266的软硬件配置以及基本功能使用,目的就是想让大家有个初步认识.并且,博主一直重点强调 ESP8266 WiFi模块有三种工作模式: St ...

  2. centos 7.6修改ssh端口,设置防火墙规则

    一.修改ssh端口 1 使用 root 用户进入 /etc/ssh目录 2 备份ssh配置文件 cp sshd_config sshd_config-bak 3 使用 vim 打开 sshd_conf ...

  3. Intellij idea 自动生成serialVersionUID

    1 什么是UID 网络间的数据传输最终都是要转化为二进制流的方式进行传输,为了方便转换以及进行验证,我们应该把对角序列化,当实现Seriabizable接口时,UID就是一个必须的属性,可以方便进行版 ...

  4. Excel接口导出,导入数据库(.Net)

    public ActionResult TestExcel(string filePath) { return View(); } /// <summary> /// 根据Excel列类型 ...

  5. HashMap - 类注释

    了解到Java8以后HashMap的实现换了,也看了很多博客一直在向我这个小菜鸡说HashMap的重要.因此我决定洗心革面,好好正视HashMap 基于jdk 8 先从类注释开始入手学习,顺便提高提高 ...

  6. 记录一次诡异的Maven Profile不生效的问题

    记录一次诡异的Maven Profile不生效的问题 现象 maven 打包之后,复制的 profile对应的resource文件总是不正确的. 即便是加了 mvn clean package -P ...

  7. MyBatis(1)-- MyBatis介绍

    一.MyBatis优点 不屏蔽SQL,意味着可以更为精确地定位SQL语句,可以对其进行优化和改造,这有利于互联网系统性能的提高,符合互联网需要性能优化的特点. 提供强大.灵活的映射机制,方便Java开 ...

  8. 《吊打面试官》系列-Redis基础

    你知道的越多,你不知道的越多 点赞再看,养成习惯 前言 Redis在互联网技术存储方面使用如此广泛,几乎所有的后端技术面试官都要在Redis的使用和原理方面对小伙伴们进行360°的刁难.作为一个在互联 ...

  9. C++学习笔记3_类.和相关函数

    1. 类*在C++中,struct和class没有明显差别,不同C#,class一定要new(手动开辟内存)出来struct Hero{ char name[64]; int sex;}void pr ...

  10. regexp盲注的一些改进

    index.php?id=1 and 1=(SELECT 1 FROM information_schema.tables WHERE TABLE_SCHEMA="blind_sqli&qu ...