g2o是一个基于图优化的库,图优化是把优化问题表现为一种图的方式。一个图由若干个顶点和边组成。

顶点表示优化变量,边表示误差项。

g2o的使用步骤:

1.定义顶点和边的类型;

2.构建图;

3.选择优化算法;

4.调用g2o进行优化

#include <iostream>
#include <g2o/core/g2o_core_api.h>
#include <g2o/core/base_vertex.h>
#include <g2o/core/base_unary_edge.h>
#include <g2o/core/block_solver.h>
#include <g2o/core/optimization_algorithm_levenberg.h>
#include <g2o/core/optimization_algorithm_gauss_newton.h>
#include <g2o/core/optimization_algorithm_dogleg.h>
#include <g2o/solvers/dense/linear_solver_dense.h>
#include <Eigen/Core>
#include <opencv2/core/core.hpp>
#include <cmath>
#include <chrono> using namespace std; // 曲线模型的顶点,模板参数:优化变量维度和数据类型
class CurveFittingVertex : public g2o::BaseVertex<3, Eigen::Vector3d> { public:
EIGEN_MAKE_ALIGNED_OPERATOR_NEW // 初始化
virtual void setToOriginImpl() override {
_estimate << 0, 0, 0;
} // 更新估计值
virtual void oplusImpl(const double *update) override {
_estimate += Eigen::Vector3d(update);
} // 存盘和读盘:留空
virtual bool read(istream &in) {} virtual bool write(ostream &out) const {}
}; // 误差模型 模板参数:观测值维度,类型,连接顶点类型
class CurveFittingEdge : public g2o::BaseUnaryEdge<1, double, CurveFittingVertex> {
public:
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
//可传入变量
CurveFittingEdge(double x) : BaseUnaryEdge(), _x(x) {} // 计算曲线模型误差
virtual void computeError() override {
//获取最新的估计值
const CurveFittingVertex *v = static_cast<const CurveFittingVertex *> (_vertices[0]);
//估计值赋值
const Eigen::Vector3d abc = v->estimate();
//计算误差
_error(0, 0) = _measurement - std::exp(abc(0, 0) * _x * _x + abc(1, 0) * _x + abc(2, 0));
} // 计算雅可比矩阵
virtual void linearizeOplus() override {
//获取最新的估计值
const CurveFittingVertex *v = static_cast<const CurveFittingVertex *> (_vertices[0]);
//估计值赋值
const Eigen::Vector3d abc = v->estimate();
//雅克比矩阵赋值
double y = exp(abc[0] * _x * _x + abc[1] * _x + abc[2]);
_jacobianOplusXi[0] = -_x * _x * y;
_jacobianOplusXi[1] = -_x * y;
_jacobianOplusXi[2] = -y;
} virtual bool read(istream &in) {} virtual bool write(ostream &out) const {} public:
double _x; // x 值, y 值为 _measurement
}; int main(int argc, char **argv) {
double ar = 1.0, br = 2.0, cr = 1.0; // 真实参数值
double ae = 2.0, be = -1.0, ce = 5.0; // 估计参数值
int N = 100; // 数据点
double w_sigma = 1.0; // 噪声Sigma值
double inv_sigma = 1.0 / w_sigma;
cv::RNG rng; // OpenCV随机数产生器 vector<double> x_data, y_data; // 数据
for (int i = 0; i < N; i++) {
double x = i / 100.0;
x_data.push_back(x);
y_data.push_back(exp(ar * x * x + br * x + cr) + rng.gaussian(w_sigma * w_sigma));
} // 构建图优化,先设定g2o
typedef g2o::BlockSolver<g2o::BlockSolverTraits<3, 1>> BlockSolverType; // 每个误差项优化变量维度为3,误差值维度为1
typedef g2o::LinearSolverDense<BlockSolverType::PoseMatrixType> LinearSolverType; // 线性求解器类型 // 梯度下降方法,可以从GN, LM, DogLeg 中选
auto solver = new g2o::OptimizationAlgorithmGaussNewton(
g2o::make_unique<BlockSolverType>(g2o::make_unique<LinearSolverType>()));
g2o::SparseOptimizer optimizer; // 图模型
optimizer.setAlgorithm(solver); // 设置求解器
optimizer.setVerbose(true); // 打开调试输出 // 往图中增加顶点
CurveFittingVertex *v = new CurveFittingVertex();
v->setEstimate(Eigen::Vector3d(ae, be, ce));
v->setId(0);
optimizer.addVertex(v); // 往图中增加边
for (int i = 0; i < N; i++) {
CurveFittingEdge *edge = new CurveFittingEdge(x_data[i]);
edge->setId(i);
edge->setVertex(0, v); // 设置连接的顶点
edge->setMeasurement(y_data[i]); // 观测数值
edge->setInformation(Eigen::Matrix<double, 1, 1>::Identity() * 1 / (w_sigma * w_sigma)); // 信息矩阵:协方差矩阵之逆
optimizer.addEdge(edge);
} // 执行优化
cout << "start optimization" << endl;
chrono::steady_clock::time_point t1 = chrono::steady_clock::now();
optimizer.initializeOptimization();
optimizer.optimize(10); //迭代次数10次
chrono::steady_clock::time_point t2 = chrono::steady_clock::now();
chrono::duration<double> time_used = chrono::duration_cast<chrono::duration<double>>(t2 - t1);
cout << "solve time cost = " << time_used.count() << " seconds. " << endl; // 输出优化值
Eigen::Vector3d abc_estimate = v->estimate();
cout << "estimated model: " << abc_estimate.transpose() << endl; return 0;
}

CMakeLists.txt:

cmake_minimum_required(VERSION 2.8)
project(ch6) set(CMAKE_BUILD_TYPE Release)
set(CMAKE_CXX_FLAGS "-std=c++14 -O3") list(APPEND CMAKE_MODULE_PATH ${PROJECT_SOURCE_DIR}/cmake) # OpenCV
find_package(OpenCV REQUIRED)
include_directories(${OpenCV_INCLUDE_DIRS}) # Ceres
find_package(Ceres REQUIRED)
include_directories(${CERES_INCLUDE_DIRS}) # g2o
find_package(G2O REQUIRED)
include_directories(${G2O_INCLUDE_DIRS}) # Eigen
include_directories("/usr/include/eigen3") add_executable(gaussNewton gaussNewton.cpp)
target_link_libraries(gaussNewton ${OpenCV_LIBS}) add_executable(ceresCurveFitting ceresCurveFitting.cpp)
target_link_libraries(ceresCurveFitting ${OpenCV_LIBS} ${CERES_LIBRARIES}) add_executable(g2oCurveFitting g2oCurveFitting.cpp)
target_link_libraries(g2oCurveFitting ${OpenCV_LIBS} g2o_core g2o_stuff)

g2o需要新建一个cmake文件,建立一个FindG2O.cmake的文件:

# Find the header files

FIND_PATH(G2O_INCLUDE_DIR g2o/core/base_vertex.h
${G2O_ROOT}/include
$ENV{G2O_ROOT}/include
$ENV{G2O_ROOT}
/usr/local/include
/usr/include
/opt/local/include
/sw/local/include
/sw/include
NO_DEFAULT_PATH
) # Macro to unify finding both the debug and release versions of the
# libraries; this is adapted from the OpenSceneGraph FIND_LIBRARY
# macro. MACRO(FIND_G2O_LIBRARY MYLIBRARY MYLIBRARYNAME) FIND_LIBRARY("${MYLIBRARY}_DEBUG"
NAMES "g2o_${MYLIBRARYNAME}_d"
PATHS
${G2O_ROOT}/lib/Debug
${G2O_ROOT}/lib
$ENV{G2O_ROOT}/lib/Debug
$ENV{G2O_ROOT}/lib
NO_DEFAULT_PATH
) FIND_LIBRARY("${MYLIBRARY}_DEBUG"
NAMES "g2o_${MYLIBRARYNAME}_d"
PATHS
~/Library/Frameworks
/Library/Frameworks
/usr/local/lib
/usr/local/lib64
/usr/lib
/usr/lib64
/opt/local/lib
/sw/local/lib
/sw/lib
) FIND_LIBRARY(${MYLIBRARY}
NAMES "g2o_${MYLIBRARYNAME}"
PATHS
${G2O_ROOT}/lib/Release
${G2O_ROOT}/lib
$ENV{G2O_ROOT}/lib/Release
$ENV{G2O_ROOT}/lib
NO_DEFAULT_PATH
) FIND_LIBRARY(${MYLIBRARY}
NAMES "g2o_${MYLIBRARYNAME}"
PATHS
~/Library/Frameworks
/Library/Frameworks
/usr/local/lib
/usr/local/lib64
/usr/lib
/usr/lib64
/opt/local/lib
/sw/local/lib
/sw/lib
) IF(NOT ${MYLIBRARY}_DEBUG)
IF(MYLIBRARY)
SET(${MYLIBRARY}_DEBUG ${MYLIBRARY})
ENDIF(MYLIBRARY)
ENDIF( NOT ${MYLIBRARY}_DEBUG) ENDMACRO(FIND_G2O_LIBRARY LIBRARY LIBRARYNAME) # Find the core elements
FIND_G2O_LIBRARY(G2O_STUFF_LIBRARY stuff)
FIND_G2O_LIBRARY(G2O_CORE_LIBRARY core) # Find the CLI library
FIND_G2O_LIBRARY(G2O_CLI_LIBRARY cli) # Find the pluggable solvers
FIND_G2O_LIBRARY(G2O_SOLVER_CHOLMOD solver_cholmod)
FIND_G2O_LIBRARY(G2O_SOLVER_CSPARSE solver_csparse)
FIND_G2O_LIBRARY(G2O_SOLVER_CSPARSE_EXTENSION csparse_extension)
FIND_G2O_LIBRARY(G2O_SOLVER_DENSE solver_dense)
FIND_G2O_LIBRARY(G2O_SOLVER_PCG solver_pcg)
FIND_G2O_LIBRARY(G2O_SOLVER_SLAM2D_LINEAR solver_slam2d_linear)
FIND_G2O_LIBRARY(G2O_SOLVER_STRUCTURE_ONLY solver_structure_only)
FIND_G2O_LIBRARY(G2O_SOLVER_EIGEN solver_eigen) # Find the predefined types
FIND_G2O_LIBRARY(G2O_TYPES_DATA types_data)
FIND_G2O_LIBRARY(G2O_TYPES_ICP types_icp)
FIND_G2O_LIBRARY(G2O_TYPES_SBA types_sba)
FIND_G2O_LIBRARY(G2O_TYPES_SCLAM2D types_sclam2d)
FIND_G2O_LIBRARY(G2O_TYPES_SIM3 types_sim3)
FIND_G2O_LIBRARY(G2O_TYPES_SLAM2D types_slam2d)
FIND_G2O_LIBRARY(G2O_TYPES_SLAM3D types_slam3d) # G2O solvers declared found if we found at least one solver
SET(G2O_SOLVERS_FOUND "NO")
IF(G2O_SOLVER_CHOLMOD OR G2O_SOLVER_CSPARSE OR G2O_SOLVER_DENSE OR G2O_SOLVER_PCG OR G2O_SOLVER_SLAM2D_LINEAR OR G2O_SOLVER_STRUCTURE_ONLY OR G2O_SOLVER_EIGEN)
SET(G2O_SOLVERS_FOUND "YES")
ENDIF(G2O_SOLVER_CHOLMOD OR G2O_SOLVER_CSPARSE OR G2O_SOLVER_DENSE OR G2O_SOLVER_PCG OR G2O_SOLVER_SLAM2D_LINEAR OR G2O_SOLVER_STRUCTURE_ONLY OR G2O_SOLVER_EIGEN) # G2O itself declared found if we found the core libraries and at least one solver
SET(G2O_FOUND "NO")
IF(G2O_STUFF_LIBRARY AND G2O_CORE_LIBRARY AND G2O_INCLUDE_DIR AND G2O_SOLVERS_FOUND)
SET(G2O_FOUND "YES")
ENDIF(G2O_STUFF_LIBRARY AND G2O_CORE_LIBRARY AND G2O_INCLUDE_DIR AND G2O_SOLVERS_FOUND)

视觉十四讲:第六讲_g2o图优化的更多相关文章

  1. ros系统21讲—前六讲

    课程介绍(第一讲) linux介绍安装(第二讲) linux的基础操作(第三讲) ROS中语言c++与python介绍(第四讲) 安装ROS系统(第五讲) 第一个: sudo sh -c echo d ...

  2. 视觉SLAM漫淡(二):图优化理论与g2o的使用

    视觉SLAM漫谈(二):图优化理论与g2o的使用 1    前言以及回顾 各位朋友,自从上一篇<视觉SLAM漫谈>写成以来已经有一段时间了.我收到几位热心读者的邮件.有的希望我介绍一下当前 ...

  3. 高翔《视觉SLAM十四讲》从理论到实践

    目录 第1讲 前言:本书讲什么:如何使用本书: 第2讲 初始SLAM:引子-小萝卜的例子:经典视觉SLAM框架:SLAM问题的数学表述:实践-编程基础: 第3讲 三维空间刚体运动 旋转矩阵:实践-Ei ...

  4. NeHe OpenGL教程 第三十四课:地形

    转自[翻译]NeHe OpenGL 教程 前言 声明,此 NeHe OpenGL教程系列文章由51博客yarin翻译(2010-08-19),本博客为转载并稍加整理与修改.对NeHe的OpenGL管线 ...

  5. 视觉slam学习之路(一)看高翔十四讲所遇到的问题

      目前实验室做机器人,主要分三个方向,定位导航,建图,图像识别,之前做的也是做了下Qt上位机,后面又弄红外识别,因为这学期上课也没怎么花时间在项目,然后导师让我们确定一个方向来,便于以后发论文什么. ...

  6. 浅读《视觉SLAM十四讲:从理论到实践》--操作1--初识SLAM

    下载<视觉SLAM十四讲:从理论到实践>源码:https://github.com/gaoxiang12/slambook 第二讲:初识SLAM 2.4.2 Hello SLAM(书本P2 ...

  7. 第三百六十四节,Python分布式爬虫打造搜索引擎Scrapy精讲—elasticsearch(搜索引擎)的mapping映射管理

    第三百六十四节,Python分布式爬虫打造搜索引擎Scrapy精讲—elasticsearch(搜索引擎)的mapping映射管理 1.映射(mapping)介绍 映射:创建索引的时候,可以预先定义字 ...

  8. 高博-《视觉SLAM十四讲》

    0 讲座 (1)SLAM定义 对比雷达传感器和视觉传感器的优缺点(主要介绍视觉SLAM) 单目:不知道尺度信息 双目:知道尺度信息,但测量范围根据预定的基线相关 RGBD:知道深度信息,但是深度信息对 ...

  9. 《视觉SLAM十四讲》第2讲

    目录 一 视觉SLAM中的传感器 二 经典视觉SLAM框架 三 SLAM问题的数学表述 注:原创不易,转载请务必注明原作者和出处,感谢支持! 本讲主要内容: (1) 视觉SLAM中的传感器 (2) 经 ...

  10. 《视觉SLAM十四讲》第1讲

    目录 一 视觉SLAM 注:原创不易,转载请务必注明原作者和出处,感谢支持! 一 视觉SLAM 什么是视觉SLAM? SLAM是Simultaneous Localization and Mappin ...

随机推荐

  1. scrapy框架命令

    scrapy startproject #创建scrapy项目 scrapy genspider test www.baidu.com #在项目下的spider目录下生成爬虫文件 test爬虫名称 w ...

  2. Kubernetes_从云原生到kubernetes

    一.前言 二.kubernetes和云原生 Cloud Native 直接翻译为云原生,云原生官网:https://www.cncf.io/ CNCF,表示 Cloud Native Computin ...

  3. .net随笔——Web开发config替换到正式config appSettings

    前言(废话) 查了一些资料,总体来说呢,就是坑,而且顺带吐槽下百度,一个内容被copy那么多遍还排在最前面.同一个内容我点了那么多次,淦. 正题: 实现目的:开发的时候使用system.debug.c ...

  4. java集合类 collection接口,List集合

    java集合类:collection接口,List集合 在java.util包中提供了一些集合类,集合类又被称为容器,常用的有List集合,Set集合,Map集合.下面将介绍collection接口和 ...

  5. 8 STL-stack

    ​ 重新系统学习c++语言,并将学习过程中的知识在这里抄录.总结.沉淀.同时希望对刷到的朋友有所帮助,一起加油哦!  生命就像一朵花,要拼尽全力绽放!死磕自个儿,身心愉悦! 写在前面,本篇章主要介绍S ...

  6. linux sublime-text ctrl+shift+b 快捷键失效问题解决

    解决办法 由于fcitx拦截了这个ctrl+shift+b 这个快捷键,所以取消即可 点击全局配置里面高级选项,然后找到ctrl+shift+b这个快捷键,点击后,按esc就可以将快捷键设置为空,不过 ...

  7. vulnhub靶场渗透实战11-Deathnote

    ​网络模式,怎么方便怎么来. 靶场地址:https://download.vulnhub.com/deathnote/Deathnote.ova 这个靶机很简单.vbox装好.​ 1:主机发现,和端口 ...

  8. MySQL进阶实战7,查询的执行过程

    @ 目录 一.拆分查询 二.分解关联查询 三.查询的执行过程 四.优化器的一些优化手段 1.重新定义关联表的顺序 2.将外连接转化为内连接 3.使用增加变换规则 4.优化count().max().m ...

  9. web框架推导 wsgiref模块 jinja2模板语法 django框架简介 django基本操作

    目录 纯手撸web框架 web框架的本质 手写web框架 存在的问题 基于wsgiref模块 基本介绍 推导流程 代码封装优化 总结 动静态网页 jinja2模块 前端.后端.数据库三者联动 推导流程 ...

  10. APICloud 入门教程窗口篇

    什么是窗口,窗口可以理解为一屏幕内容的一个基本载体,里面可以放导航,图片,视频,文字等组成一屏幕内容. 不同的窗口组成一个APP, 例如购物APP有[首页],[购物车],[我的]等不同的窗口.不同的窗 ...