.NET二叉树,递归和迭代遍历二叉树
代码随想录: https://programmercarl.com
.NET中二叉树的定义
public class TreeNode
{
public int val;
public TreeNode left;
public TreeNode right;
public TreeNode(int val = 0, TreeNode left = null, TreeNode right = null)
{
this.val = val;
this.left = left;
this.right = right;
}
}
二叉树的种类
满二叉树
满二叉树:如果一棵二叉树只有度为0的结点和度为2的结点,并且度为0的结点在同一层上,则这棵二叉树为满二叉树。
如图所示:

这棵二叉树为满二叉树,也可以说深度为k,有2^k-1个节点的二叉树。
完全二叉树
什么是完全二叉树?
完全二叉树的定义如下:在完全二叉树中,除了最底层节点可能没填满外,其余每层节点数都达到最大值,并且最下面一层的节点都集中在该层最左边的若干位置。若最底层为第 h 层,则该层包含 1~ 2^(h-1) 个节点。
大家要自己看完全二叉树的定义,很多同学对完全二叉树其实不是真正的懂了。
我来举一个典型的例子如题:

相信不少同学最后一个二叉树是不是完全二叉树都中招了。
之前我们刚刚讲过优先级队列其实是一个堆,堆就是一棵完全二叉树,同时保证父子节点的顺序关系。
二叉搜索树
前面介绍的树,都没有数值的,而二叉搜索树是有数值的了,二叉搜索树是一个有序树。
若它的左子树不空,则左子树上所有结点的值均小于它的根结点的值;
若它的右子树不空,则右子树上所有结点的值均大于它的根结点的值;
它的左、右子树也分别为二叉排序树
下面这两棵树都是搜索树

平衡二叉搜索树
平衡二叉搜索树:又被称为AVL(Adelson-Velsky and Landis)树,且具有以下性质:它是一棵空树或它的左右两个子树的高度差的绝对值不超过1,并且左右两个子树都是一棵平衡二叉树。
如图:

最后一棵 不是平衡二叉树,因为它的左右两个子树的高度差的绝对值超过了1。
C++中map、set、multimap,multiset的底层实现都是平衡二叉搜索树,所以map、set的增删操作时间时间复杂度是logn,注意我这里没有说unordered_map、unordered_set,unordered_map、unordered_map底层实现是哈希表。
所以大家使用自己熟悉的编程语言写算法,一定要知道常用的容器底层都是如何实现的,最基本的就是map、set等等,否则自己写的代码,自己对其性能分析都分析不清楚!
二叉树的存储方式
二叉树可以链式存储,也可以顺序存储。
那么链式存储方式就用指针, 顺序存储的方式就是用数组。
顾名思义就是顺序存储的元素在内存是连续分布的,而链式存储则是通过指针把分布在散落在各个地址的节点串联一起。
链式存储如图:

链式存储是大家很熟悉的一种方式,那么我们来看看如何顺序存储呢?
其实就是用数组来存储二叉树,顺序存储的方式如图:

用数组来存储二叉树如何遍历的呢?
如果父节点的数组下标是 i,那么它的左孩子就是 i * 2 + 1,右孩子就是 i * 2 + 2。
但是用链式表示的二叉树,更有利于我们理解,所以一般我们都是用链式存储二叉树。
所以大家要了解,用数组依然可以表示二叉树。
递归遍历
前序遍历
/// <summary>
/// 前序遍历(中左右)
/// </summary>
/// <param name="root"></param>
/// <returns></returns>
public IList<int> PreorderTraversal(TreeNode root)
{
List<int> result = new List<int>();
Preorder(result, root);
return result;
}
public void Preorder(List<int> result, TreeNode node)
{
if (node == null) return;
result.Add(node.val);//中
Preorder(result, node.left);//左
Preorder(result, node.right);//右
}
中序遍历
/// <summary>
/// 中序遍历(左中右)
/// </summary>
/// <param name="root"></param>
/// <returns></returns>
public IList<int> InorderTraversal(TreeNode root)
{
List<int> result = new List<int>();
Inorder(result, root);
return result;
}
public void Inorder(List<int> result, TreeNode node)
{
if (node == null) return;
Inorder(result, node.left);//左
result.Add(node.val);//中
Inorder(result, node.right);//右
}
后序遍历
/// <summary>
/// 后序遍历(左右中)
/// </summary>
/// <param name="root"></param>
/// <returns></returns>
public IList<int> PostOrderTraversal(TreeNode root)
{
List<int> result = new List<int>();
PostOrder(result, root);
return result;
}
public void PostOrder(List<int> result, TreeNode node)
{
if (node == null) return;
PostOrder(result, node.left);//左
PostOrder(result, node.right);//右
result.Add(node.val);//中
}
迭代遍历
前序遍历
/// <summary>
/// 前序遍历(中左右)
/// </summary>
/// <param name="root"></param>
/// <returns></returns>
public IList<int> PreOrderTraversal(TreeNode root)
{
IList<int> res = new List<int>();
Stack<TreeNode> st = new Stack<TreeNode>();
if (root != null) st.Push(root);
while (st.Count > 0)
{
TreeNode node = st.Pop();
if (node != null)
{
if (node.right != null) st.Push(node.right);
if (node.left != null) st.Push(node.left);
st.Push(node);
st.Push(null);
}
else
{
node = st.Pop();
res.Add(node.val);
}
}
return res;
}
中序遍历
/// <summary>
/// 中序遍历(左中右)
/// </summary>
/// <param name="root"></param>
/// <returns></returns>
public IList<int> InorderTraversal(TreeNode root)
{
IList<int> res = new List<int>();
Stack<TreeNode> st = new Stack<TreeNode>();
if (root != null) st.Push(root);
while (st.Count > 0)
{
TreeNode node = st.Pop();
if (node != null)
{
if (node.right != null) st.Push(node.right);
st.Push(node);
st.Push(null);
if (node.left != null) st.Push(node.left);
}
else
{
node = st.Pop();
res.Add(node.val);
}
}
return res;
}
后续遍历
/// <summary>
/// 后序遍历(左右中)
/// </summary>
/// <param name="root"></param>
/// <returns></returns>
public IList<int> PostOrderTraversal(TreeNode root)
{
IList<int> res = new List<int>();
Stack<TreeNode> st = new Stack<TreeNode>();
if (root != null) st.Push(root);
while (st.Count > 0)
{
TreeNode node = st.Pop();
if (node != null)
{
st.Push(node);
st.Push(null);
if (node.right != null) st.Push(node.right);
if (node.left != null) st.Push(node.left);
}
else
{
node = st.Pop();
res.Add(node.val);
}
}
return res;
}
层序遍历
递归遍历
IList<IList<int>> res = new List<IList<int>>();
public IList<IList<int>> LevelOrder(TreeNode root)
{
LevelDFS(root, 0);
return res;
}
public void LevelDFS(TreeNode root, int deep)
{
if (root == null) return;
deep++;
if (res.Count < deep)
{
IList<int> item = new List<int>();
res.Add(item);
}
res[deep - 1].Add(root.val);
LevelDFS(root.left, deep);
LevelDFS(root.right, deep);
}
迭代遍历
IList<IList<int>> res = new List<IList<int>>();
public IList<IList<int>> LevelOrder(TreeNode root)
{
Queue<TreeNode> que = new Queue<TreeNode>();
if (root != null) que.Enqueue(root);
while (que.Count > 0)
{
IList<int> item = new List<int>();
int len = que.Count;
while (len > 0)
{
TreeNode node = que.Dequeue();
item.Add(node.val);
if (node.left != null) que.Enqueue(node.left);
if (node.right != null) que.Enqueue(node.right);
len--;
}
res.Add(item);
}
return res;
}
代码随想录: https://programmercarl.com
.NET二叉树,递归和迭代遍历二叉树的更多相关文章
- java创建二叉树并实现非递归中序遍历二叉树
java创建二叉树并递归遍历二叉树前面已有讲解:http://www.cnblogs.com/lixiaolun/p/4658659.html. 在此基础上添加了非递归中序遍历二叉树: 二叉树类的代码 ...
- 递归/非递归----python深度遍历二叉树(前序遍历,中序遍历,后序遍历)
递归代码:递归实现很简单 '二叉树结点类' class TreeNode: def __init__(self, x): self.val = x self.left = None self.righ ...
- LeetCode 94 | 基础题,如何不用递归中序遍历二叉树?
今天是LeetCode专题第60篇文章,我们一起来看的是LeetCode的94题,二叉树的中序遍历. 这道题的官方难度是Medium,点赞3304,反对只有140,通过率有63.2%,在Medium的 ...
- 二叉树各种相关操作(建立二叉树、前序、中序、后序、求二叉树的深度、查找二叉树节点,层次遍历二叉树等)(C语言版)
将二叉树相关的操作集中在一个实例里,有助于理解有关二叉树的相关操作: 1.定义树的结构体: typedef struct TreeNode{ int data; struct TreeNode *le ...
- 非递归遍历二叉树Java版的实现代码(没写层次遍历)
直接上代码呵呵,里面有注解 package www.com.leetcode.specificProblem; import java.util.ArrayList; import java.util ...
- Leetcode 94. Binary Tree Inorder Traversal (中序遍历二叉树)
Given a binary tree, return the inorder traversal of its nodes' values. For example: Given binary tr ...
- leetcode 94二叉树的中序遍历
递归算法C++代码: /** * Definition for a binary tree node. * struct TreeNode { * int val; * TreeNode *left; ...
- C++编程练习(8)----“二叉树的建立以及二叉树的三种遍历方式“(前序遍历、中序遍历、后续遍历)
树 利用顺序存储和链式存储的特点,可以实现树的存储结构的表示,具体表示法有很多种. 1)双亲表示法:在每个结点中,附设一个指示器指示其双亲结点在数组中的位置. 2)孩子表示法:把每个结点的孩子排列起来 ...
- 数据结构与算法(c++)——查找二叉树与中序遍历
查找树ADT--查找二叉树 定义:对于树中的每个节点X,它的左子树中的所有项的值小于X中的项,而它的右子树中所有项的值大于X中的项. 现在给出字段和方法定义(BinarySearchTree.h) # ...
- Qt实现 动态化遍历二叉树(前中后层次遍历)
binarytree.h 头文件 #ifndef LINKEDBINARYTREE_H #define LINKEDBINARYTREE_H #include<c++/algorithm> ...
随机推荐
- ansible 002 连接被控端 inventory ansible.cfg ansible-adhoc ansible原理
ssh用普通用户连接被控端 配置主机清单 (/etc/hosts域名解析为前提) [root@workstation ansible]# cat hosts servera serverb [root ...
- 在 C# CLR 中学习 C++ 之了解 extern
一:背景 在 CLR 源码中有很多的 extern 和 extern "C" 这样的关键词,比如下面这些代码: extern size_t gc_global_mechanisms ...
- GIN and RUM 索引性能比较
gin索引字段entry构造的TREE,在末端posting tree|list 里面存储的是entry对应的行号. 别无其他信息.rum索引,与GIN类似,但是在posting list|tree的 ...
- Java中的引用概念
Java对对象和基本的数据类型的处理是不一样的.和C语言一样,当把Java的基本数据类型(如int,char,double等)作为入口参数传给函数体的时候,传入的参数在函数体内部变成了局部变量,这个局 ...
- 跟羽夏学 Ghidra ——初识
写在前面 此系列是本人一个字一个字码出来的,包括示例和实验截图.本人非计算机专业,可能对本教程涉及的事物没有了解的足够深入,如有错误,欢迎批评指正. 如有好的建议,欢迎反馈.码字不易,如果本篇文章 ...
- LFS(Linux From Scratch)构建过程全记录(五):交叉工具链的构建
写在前面 本文将详细讲述如何构建工具链 前置知识 在LFS-BOOK中,我们需要学习一些关于"交叉编译"的内容,详见书本 安装Binutils-2.39 我们cd到sources文 ...
- k8s实际操作中的小知识点
1.批量执行yaml文件 # 把所有要执行的yaml文件放在同一个目录下,并且切换到这个目录下 kubectl apply -f . 2.利用pod的亲和和反亲和功能把pod调度到不同的node上 亲 ...
- 1.通俗易懂理解Kubernetes核心组件及原理
文章转载自:https://mp.weixin.qq.com/s?__biz=MzI1MDgwNzQ1MQ==&mid=2247483736&idx=1&sn=0cbc3d6a ...
- Elastic App Search 入门
官方文档地址:https://swiftype.com/documentation/app-search/getting-started Elastic App Search 架构图: 它的特点是帮助 ...
- FastDFS与nginx配置使用的配置信息
# 获取图片 location /group[1-9]/M0[0-9] { root /home/vdc1/fastdfs_storage/data; ngx_fastdfs_module; } # ...