即使n个数的异或为0。如果只有两堆,将质数筛出来设为1,做一个异或卷积即可。显然这个东西满足结合律,多堆时直接快速幂。可以在点值表示下进行。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<cstdlib>
#include<algorithm>
using namespace std;
#define N (1<<17)
#define P 1000000007
#define inv2 500000004
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
int T,n,m,f[N];
bool flag[N];
int ksm(int a,int k)
{
int s=;
for (;k;k>>=,a=1ll*a*a%P) if (k&) s=1ll*s*a%P;
return s;
}
void FWT(int *a,int n,int op)
{
for (int i=;i<=n;i<<=)
for (int j=;j<n;j+=i)
for (int k=j;k<j+(i>>);k++)
{
int x=a[k],y=a[k+(i>>)];
a[k]=(x+y)%P,a[k+(i>>)]=(x-y+P)%P;
if (op==) a[k]=1ll*a[k]*inv2%P,a[k+(i>>)]=1ll*a[k+(i>>)]*inv2%P;
}
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj4589.in","r",stdin);
freopen("bzoj4589.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
flag[]=flag[]=;
for (int i=;i<=;i++)
for (int j=;j<=/i;j++)
flag[i*j]=;
while (scanf("%d %d",&n,&m)!=EOF)
{
int t=;while (t<=m) t<<=;
for (int i=;i<=m;i++) f[i]=flag[i]^;
for (int i=m+;i<t;i++) f[i]=;
FWT(f,t,);
for (int i=;i<t;i++) f[i]=ksm(f[i],n);
FWT(f,t,);
cout<<f[]<<endl;
}
}

BZOJ4589 Hard Nim(博弈+FWT)的更多相关文章

  1. BZOJ4589 Hard Nim 【FWT】

    题目链接 BZOJ4589 题解 FWT 模板题 #include<algorithm> #include<iostream> #include<cstdlib> ...

  2. HDU 2509 Nim博弈变形

    1.HDU 2509  2.题意:n堆苹果,两个人轮流,每次从一堆中取连续的多个,至少取一个,最后取光者败. 3.总结:Nim博弈的变形,还是不知道怎么分析,,,,看了大牛的博客. 传送门 首先给出结 ...

  3. HDU 1907 Nim博弈变形

    1.HDU 1907 2.题意:n堆糖,两人轮流,每次从任意一堆中至少取一个,最后取光者输. 3.总结:有点变形的Nim,还是不太明白,盗用一下学长的分析吧 传送门 分析:经典的Nim博弈的一点变形. ...

  4. zoj3591 Nim(Nim博弈)

    ZOJ 3591 Nim(Nim博弈) 题目意思是说有n堆石子,Alice只能从中选出连续的几堆来玩Nim博弈,现在问Alice想要获胜有多少种方法(即有多少种选择方式). 方法是这样的,由于Nim博 ...

  5. hdu 1907 John&& hdu 2509 Be the Winner(基础nim博弈)

    Problem Description Little John is playing very funny game with his younger brother. There is one bi ...

  6. 关于NIM博弈结论的证明

    关于NIM博弈结论的证明 NIM博弈:有k(k>=1)堆数量不一定的物品(石子或豆粒…)两人轮流取,每次只能从一堆中取若干数量(小于等于这堆物品的数量)的物品,判定胜负的条件就是,最后一次取得人 ...

  7. HDU - 1850 Nim博弈

    思路:可以对任意一堆牌进行操作,根据Nim博弈定理--所有堆的数量异或值为0就是P态,否则为N态,那么直接对某堆牌操作能让所有牌异或值为0即可,首先求得所有牌堆的异或值,然后枚举每一堆,用已经得到的异 ...

  8. 博弈论中的Nim博弈

    瞎扯 \(orzorz\) \(cdx\) 聚聚给我们讲了博弈论.我要没学上了,祝各位新年快乐.现在让我讲课我都不知道讲什么,我会的东西大家都会,太菜了太菜了. 马上就要回去上文化课了,今明还是收下尾 ...

  9. HDU 2176:取(m堆)石子游戏(Nim博弈)

    取(m堆)石子游戏 Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Sub ...

  10. hdu 1730 Nim博弈

    题目来源:http://acm.hdu.edu.cn/showproblem.php?pid=1730 Nim博弈为:n堆石子,每个人可以在任意一堆中取任意数量的石子 n个数异或值为0就后手赢,否则先 ...

随机推荐

  1. Android failed to start daemon

    异常描述:在Eclipse中运行Android项目时Console中出现: The connection to adb is down, and a severe error has occured. ...

  2. [SDOI2009]HH的项链 BZOJ1878

    分析: 听说是莫队裸题,很显然,我并不喜欢莫队. 我们可以考虑将询问离线,以右端点排序,之后从1枚举到n,依次树状数组中修改i和last[i],之后当i==询问的右节点时,find一下答案就可以了. ...

  3. [Baltic 2011]Lamp BZOJ2346

    分析: 建图最短路,比较裸. 我们可以考虑,如果是‘\’那么,左上连右下边权为0,左下连右上边权为1,反之亦然. 卡裸spfa,加点优化能过,我就直接改成的堆优化Dijkstra 附上代码: #inc ...

  4. 20155311 Exp3 免杀原理与实践

    20155311 Exp3 免杀原理与实践 •免杀 一般是对恶意软件做处理,让它不被杀毒软件所检测.也是渗透测试中需要使用到的技术. [基础问题回答] (1)杀软是如何检测出恶意代码的? 1.通过特征 ...

  5. 【WPF】数据验证

    原文:[WPF]数据验证 引言      数据验证在任何用户界面程序中都是不可缺少的一部分.在WPF中,数据验证更是和绑定紧紧联系在一起,下面简单介绍MVVM模式下常用的几种验证方式. 错误信息显示 ...

  6. Android开发——异步任务中Activity销毁时的问题

    0.  前言 在Android开发中经常会发生Activity的销毁重建,比如用户长时间接听一个电话后回到APP.在Android开发--Fragment知识整理(二)中我们提到了使用Fragment ...

  7. python变量名感悟

    我感悟的是python的变量名其实就可以理解为C/C++中的指针! 1.python的变量在使用之前必须赋值,就像指针在使用之前不能为空. 2.python的内存可以用del释放,C++可以用dele ...

  8. Ubuntu16.04上用源代码安装ICE

    ubuntu16.04上用源代码安装ICE

  9. [CF963E]Circles of Waiting[高斯消元网格图优化+期望]

    题意 你初始位于 \((0,0)\) ,每次向上下左右四个方向走一步有确定的概率,问你什么时候可以走到 以 \((0,0)\)为圆心,\(R\) 为半径的圆外. \(R\le 50\) 分析 暴力 \ ...

  10. jQuery .attr() vs. .prop()

    Property vs. Attribute 在开始正式比较prop()和attr()两个jQuery方法之前,我们有必要先弄清一下Property和Attribute两个单词的意思.在中文里面,它们 ...