【BZOJ4883】棋盘上的守卫(最小生成树)
【BZOJ4883】棋盘上的守卫(最小生成树)
题面
题解
首先\(n\)行\(m\)列的棋盘显然把行列拆开考虑,即构成了一个\(n+m\)个点的图。我们把格子看成边,那么点\((x,y)\),看成\(x\)与\(y\)的一条边,方向自己随便定。那么我们的任务就是选择一些边,使得所有点的入度至少为\(1\),既然要最小则显然为恰好为\(1\)。那么我们现在有\(n*m\)条边,\(n+m\)个点,要构建一个\(n+m\)个点的图,显然这个玩意是一个基环森林,类似克鲁斯卡尔一样的维护一下即可。
#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
#define MAX 100100
#define ll long long
inline int read()
{
int x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
ll ans;
int n,m,tot,f[MAX];
bool cir[MAX];
struct edge{int u,v,w;}E[MAX];
bool operator<(edge a,edge b){return a.w<b.w;}
int id(int i,int j){return (i-1)*m+j;}
int getf(int x){return x==f[x]?x:f[x]=getf(f[x]);}
int main()
{
n=read();m=read();
for(int i=1;i<=n+m;++i)f[i]=i;
for(int i=1;i<=n;++i)
for(int j=1;j<=m;++j)
E[++tot]=(edge){i,j+n,read()};
sort(&E[1],&E[tot+1]);
for(int i=1;i<=tot;++i)
{
int u=getf(E[i].u),v=getf(E[i].v);
if(u==v){if(!cir[u])cir[u]=true,ans+=E[i].w;}
else if(!cir[u]||!cir[v])
f[u]=v,ans+=E[i].w,cir[v]|=cir[u];
}
printf("%lld\n",ans);return 0;
}
【BZOJ4883】棋盘上的守卫(最小生成树)的更多相关文章
- BZOJ4883 棋盘上的守卫(环套树+最小生成树)
容易想到网络流之类的东西,虽然范围看起来不太可做,不过这提供了一种想法,即将行列分别看做点.那么我们需要找一种连n+m条边的方案,使得可以从每条边中选一个点以覆盖所有点.显然每个点至少要连一条边.于是 ...
- BZOJ 4883: [Lydsy1705月赛]棋盘上的守卫 最小生成树 + 建模
Description 在一个n*m的棋盘上要放置若干个守卫.对于n行来说,每行必须恰好放置一个横向守卫:同理对于m列来说,每列 必须恰好放置一个纵向守卫.每个位置放置守卫的代价是不一样的,且每个位置 ...
- BZOJ4883 棋盘上的守卫 基环树、Kruskal
题目传送门:https://www.lydsy.com/JudgeOnline/problem.php?id=4883 题意:给出一个$N \times M$的棋盘,每个格子有权值.你需要每一行选中一 ...
- BZOJ 4883 棋盘上的守卫 解题报告
BZOJ4883 棋盘上的守卫 考虑费用流,但是数据范围太大 考虑 \(i\) 行 \(j\) 列如果被选择,那么要么给 \(i\) 行,要么给 \(j\) 列 把选择 \(i\) 行 \(j\) 列 ...
- 【题解】BZOJ4883: [Lydsy1705月赛]棋盘上的守卫(最小生成基环森林)
[题解]BZOJ4883: [Lydsy1705月赛]棋盘上的守卫(最小生成基环森林) 神题 我的想法是,每行每列都要有匹配且一个点只能匹配一个,于是就把格点和每行每列建点出来做一个最小生成树,但是不 ...
- 【BZOJ4883】[Lydsy2017年5月月赛]棋盘上的守卫 KM算法
[BZOJ4883][Lydsy2017年5月月赛]棋盘上的守卫 Description 在一个n*m的棋盘上要放置若干个守卫.对于n行来说,每行必须恰好放置一个横向守卫:同理对于m列来说,每列 必须 ...
- BZOJ4883: [Lydsy1705月赛]棋盘上的守卫(最小环套树森林&优化定向问题)
4883: [Lydsy1705月赛]棋盘上的守卫 Time Limit: 3 Sec Memory Limit: 256 MBSubmit: 475 Solved: 259[Submit][St ...
- 【BZOJ4883】 [Lydsy1705月赛]棋盘上的守卫(最小生成树,基环树)
传送门 BZOJ Solution 考虑一下如果把行,列当成点,那么显然这个东西就是一个基环树对吧. 直接按照\(Kruscal\)那样子搞就好了. 代码实现 代码戳这里
- [bzoj4883][Lydsy2017年5月月赛]棋盘上的守卫
来自FallDream的博客,未经允许,请勿转载, 谢谢. 在一个n*m的棋盘上要放置若干个守卫.对于n行来说,每行必须恰好放置一个横向守卫:同理对于m列来说,每列 必须恰好放置一个纵向守卫.每个位置 ...
随机推荐
- 感言&2
我写下这些,不是为了向谁诉说我的苦难,我家庭的苦难,而只是想说,朋友,当你们能够坐在星巴克里点杯咖啡打开Macbook刷知乎,思考“人为什么努力”这样的问题时有无数个像我一样出身的孩子在拼命,不因为什 ...
- mssql2012的分页查询
sql2102支持的分页查询 注意:以下都是先执行排序,再取行数据 select* from t_workers order by worker_id desc offset 3 rows --先 ...
- 20155210 Exp8 WEB基础实践
Exp8 WEB基础实践 Apache环境配置 apache是kali下的web服务器,通过访问ip地址+端口号+文件名称可以打开对应的网页. 输入命令vi /etc/apache2/ports.co ...
- ZeroMQ使用汇总
ZeroMQ,史上最快的消息队列 —– ZMQ的学习和研究 ZeroMQ 的模式 [架构] ZeroMQ 深度探索(一) 消息队列ZeroMQ 服务端使用流程: void* m_Context; v ...
- CF891C Envy
题面 题解 首先要知道两个性质: 对于任意权值,最小生成树上该权值的边数是相同的. 对于任意一个最小生成树,当加完所有权值小于一个任意值的边之后,当前图的连通性是一样的. 于是我们按照权值分开处理,对 ...
- app.use( )做一个静态资源服务
var express = require("express"); var app = express(); //静态服务 app.use("/jingtai" ...
- Linux部署DotNetCore记录
一.背景 最近半年或最近三个月来,公司在计划大刀阔斧的规划重构新的产品.按目前的计划和宣传还是很令人期待的.前端预计应用现在很流行的前端框架,有Vue.ElementUI等,后端宣传了很多微服务.持续 ...
- Java开源博客My-Blog之docker容器组件化修改
前言 5月13号上线了自己的个人博客,<Docker+SpringBoot+Mybatis+thymeleaf的Java博客系统开源啦>,紧接着也在github上开源了博客的代码,到现在为 ...
- POJ1094——拓扑排序和它的唯一性
比较模板的topological-sort题,关键在于每个元素都严格存在唯一的大小关系,而一般的拓扑排序只给出一个可能解,这就需要每趟排序的过程中监视它是不是总坚持一条唯一的路径. 算法导论里面的拓扑 ...
- Unity3D — — UGUI之简易背包
Uinity版本:2017.3 最近在学Siki老师的<黑暗之光RPG>教程,由于教程内用的是NGUI实现,而笔者本人用的是UGUI,所以在这里稍微写一下自己的实现思路(大致上和NGUI一 ...