【BZOJ4883】棋盘上的守卫(最小生成树)
【BZOJ4883】棋盘上的守卫(最小生成树)
题面
题解
首先\(n\)行\(m\)列的棋盘显然把行列拆开考虑,即构成了一个\(n+m\)个点的图。我们把格子看成边,那么点\((x,y)\),看成\(x\)与\(y\)的一条边,方向自己随便定。那么我们的任务就是选择一些边,使得所有点的入度至少为\(1\),既然要最小则显然为恰好为\(1\)。那么我们现在有\(n*m\)条边,\(n+m\)个点,要构建一个\(n+m\)个点的图,显然这个玩意是一个基环森林,类似克鲁斯卡尔一样的维护一下即可。
#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
#define MAX 100100
#define ll long long
inline int read()
{
int x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
ll ans;
int n,m,tot,f[MAX];
bool cir[MAX];
struct edge{int u,v,w;}E[MAX];
bool operator<(edge a,edge b){return a.w<b.w;}
int id(int i,int j){return (i-1)*m+j;}
int getf(int x){return x==f[x]?x:f[x]=getf(f[x]);}
int main()
{
n=read();m=read();
for(int i=1;i<=n+m;++i)f[i]=i;
for(int i=1;i<=n;++i)
for(int j=1;j<=m;++j)
E[++tot]=(edge){i,j+n,read()};
sort(&E[1],&E[tot+1]);
for(int i=1;i<=tot;++i)
{
int u=getf(E[i].u),v=getf(E[i].v);
if(u==v){if(!cir[u])cir[u]=true,ans+=E[i].w;}
else if(!cir[u]||!cir[v])
f[u]=v,ans+=E[i].w,cir[v]|=cir[u];
}
printf("%lld\n",ans);return 0;
}
【BZOJ4883】棋盘上的守卫(最小生成树)的更多相关文章
- BZOJ4883 棋盘上的守卫(环套树+最小生成树)
容易想到网络流之类的东西,虽然范围看起来不太可做,不过这提供了一种想法,即将行列分别看做点.那么我们需要找一种连n+m条边的方案,使得可以从每条边中选一个点以覆盖所有点.显然每个点至少要连一条边.于是 ...
- BZOJ 4883: [Lydsy1705月赛]棋盘上的守卫 最小生成树 + 建模
Description 在一个n*m的棋盘上要放置若干个守卫.对于n行来说,每行必须恰好放置一个横向守卫:同理对于m列来说,每列 必须恰好放置一个纵向守卫.每个位置放置守卫的代价是不一样的,且每个位置 ...
- BZOJ4883 棋盘上的守卫 基环树、Kruskal
题目传送门:https://www.lydsy.com/JudgeOnline/problem.php?id=4883 题意:给出一个$N \times M$的棋盘,每个格子有权值.你需要每一行选中一 ...
- BZOJ 4883 棋盘上的守卫 解题报告
BZOJ4883 棋盘上的守卫 考虑费用流,但是数据范围太大 考虑 \(i\) 行 \(j\) 列如果被选择,那么要么给 \(i\) 行,要么给 \(j\) 列 把选择 \(i\) 行 \(j\) 列 ...
- 【题解】BZOJ4883: [Lydsy1705月赛]棋盘上的守卫(最小生成基环森林)
[题解]BZOJ4883: [Lydsy1705月赛]棋盘上的守卫(最小生成基环森林) 神题 我的想法是,每行每列都要有匹配且一个点只能匹配一个,于是就把格点和每行每列建点出来做一个最小生成树,但是不 ...
- 【BZOJ4883】[Lydsy2017年5月月赛]棋盘上的守卫 KM算法
[BZOJ4883][Lydsy2017年5月月赛]棋盘上的守卫 Description 在一个n*m的棋盘上要放置若干个守卫.对于n行来说,每行必须恰好放置一个横向守卫:同理对于m列来说,每列 必须 ...
- BZOJ4883: [Lydsy1705月赛]棋盘上的守卫(最小环套树森林&优化定向问题)
4883: [Lydsy1705月赛]棋盘上的守卫 Time Limit: 3 Sec Memory Limit: 256 MBSubmit: 475 Solved: 259[Submit][St ...
- 【BZOJ4883】 [Lydsy1705月赛]棋盘上的守卫(最小生成树,基环树)
传送门 BZOJ Solution 考虑一下如果把行,列当成点,那么显然这个东西就是一个基环树对吧. 直接按照\(Kruscal\)那样子搞就好了. 代码实现 代码戳这里
- [bzoj4883][Lydsy2017年5月月赛]棋盘上的守卫
来自FallDream的博客,未经允许,请勿转载, 谢谢. 在一个n*m的棋盘上要放置若干个守卫.对于n行来说,每行必须恰好放置一个横向守卫:同理对于m列来说,每列 必须恰好放置一个纵向守卫.每个位置 ...
随机推荐
- Redis Twemproxy
主从复制+哨兵解决了读性能和高可用问题,但没有解决写性能问题. Twemproxy将写请求分配到不同节点处理. Twemproxy是Twitter开源的一个redis和memcache代理服务器. 允 ...
- 大数据入门第二十四天——SparkStreaming(二)与flume、kafka整合
前一篇中数据源采用的是从一个socket中拿数据,有点属于“旁门左道”,正经的是从kafka等消息队列中拿数据! 主要支持的source,由官网得知如下: 获取数据的形式包括推送push和拉取pull ...
- Hadoop日记Day6---Linux的常用命令
一.系统操作(开机.关机.登陆等)命令 选项名称 使用格式 含义 reboot 输入回车即可 立刻重启 shutdown shutdown –r now 立刻重启 shutdown –r 20: ...
- Kubernetes学习之路(二十五)之Helm程序包管理器
目录 1.Helm的概念和架构 2.部署Helm (1)下载helm (2)部署Tiller 3.helm的使用 4.chart 目录结构 5.chart模板 6.定制安装MySQL chart (1 ...
- Security6:查看授予的权限
在SQL Server的安全体系中,权限分为服务器级别(Server-Level)和数据库级别(Database-Level),用户的权限分为两种形式,分别是直接授予的权限,以及由于加入角色而获得的权 ...
- 关于元素设置margin-top能够改变body位置的原因及解决(子元素设置margin-top改变父元素定位)
关于元素设置margin-top能够改变body位置的原因及解决(子元素设置margin-top改变父元素定位) 起因:在进行bootstrap的.navbar-brand内文字设置垂直居中时采用li ...
- grunt-inline:一个资源内嵌插件
一.插件简介 将引用的外部资源,如js.css.img等,内嵌到引用它们的文件里去. 二.使用场景 在项目中,出于某些原因,有的时候我们需要将一些资源,比如js脚本内嵌到页面中去.比如我们的html页 ...
- 如何在内网安装compass
神器compass是肿么用这里不做介绍,因为我也不清楚,可参考官网:http://compass-style.org.这里主要介绍如何在内网安装compass. 首先介绍一般是如何安装compass的 ...
- docker之compose 编排项目
一.docker-compose 的介绍 docker-compose是一种容器编排工具,可以将多个docker容器关联部署.通过yaml文件,可以描述应用的架构,如使用什么镜像.数据卷.网络.绑定服 ...
- Azure 基础:File Storage
Azure Storage 是微软 Azure 云提供的云端存储解决方案,当前支持的存储类型有 Blob.Queue.File 和 Table. 笔者在前文中介绍了 Blob Storage 的基本用 ...