【BZOJ4883】棋盘上的守卫(最小生成树)
【BZOJ4883】棋盘上的守卫(最小生成树)
题面
题解
首先\(n\)行\(m\)列的棋盘显然把行列拆开考虑,即构成了一个\(n+m\)个点的图。我们把格子看成边,那么点\((x,y)\),看成\(x\)与\(y\)的一条边,方向自己随便定。那么我们的任务就是选择一些边,使得所有点的入度至少为\(1\),既然要最小则显然为恰好为\(1\)。那么我们现在有\(n*m\)条边,\(n+m\)个点,要构建一个\(n+m\)个点的图,显然这个玩意是一个基环森林,类似克鲁斯卡尔一样的维护一下即可。
#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
#define MAX 100100
#define ll long long
inline int read()
{
int x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
ll ans;
int n,m,tot,f[MAX];
bool cir[MAX];
struct edge{int u,v,w;}E[MAX];
bool operator<(edge a,edge b){return a.w<b.w;}
int id(int i,int j){return (i-1)*m+j;}
int getf(int x){return x==f[x]?x:f[x]=getf(f[x]);}
int main()
{
n=read();m=read();
for(int i=1;i<=n+m;++i)f[i]=i;
for(int i=1;i<=n;++i)
for(int j=1;j<=m;++j)
E[++tot]=(edge){i,j+n,read()};
sort(&E[1],&E[tot+1]);
for(int i=1;i<=tot;++i)
{
int u=getf(E[i].u),v=getf(E[i].v);
if(u==v){if(!cir[u])cir[u]=true,ans+=E[i].w;}
else if(!cir[u]||!cir[v])
f[u]=v,ans+=E[i].w,cir[v]|=cir[u];
}
printf("%lld\n",ans);return 0;
}
【BZOJ4883】棋盘上的守卫(最小生成树)的更多相关文章
- BZOJ4883 棋盘上的守卫(环套树+最小生成树)
容易想到网络流之类的东西,虽然范围看起来不太可做,不过这提供了一种想法,即将行列分别看做点.那么我们需要找一种连n+m条边的方案,使得可以从每条边中选一个点以覆盖所有点.显然每个点至少要连一条边.于是 ...
- BZOJ 4883: [Lydsy1705月赛]棋盘上的守卫 最小生成树 + 建模
Description 在一个n*m的棋盘上要放置若干个守卫.对于n行来说,每行必须恰好放置一个横向守卫:同理对于m列来说,每列 必须恰好放置一个纵向守卫.每个位置放置守卫的代价是不一样的,且每个位置 ...
- BZOJ4883 棋盘上的守卫 基环树、Kruskal
题目传送门:https://www.lydsy.com/JudgeOnline/problem.php?id=4883 题意:给出一个$N \times M$的棋盘,每个格子有权值.你需要每一行选中一 ...
- BZOJ 4883 棋盘上的守卫 解题报告
BZOJ4883 棋盘上的守卫 考虑费用流,但是数据范围太大 考虑 \(i\) 行 \(j\) 列如果被选择,那么要么给 \(i\) 行,要么给 \(j\) 列 把选择 \(i\) 行 \(j\) 列 ...
- 【题解】BZOJ4883: [Lydsy1705月赛]棋盘上的守卫(最小生成基环森林)
[题解]BZOJ4883: [Lydsy1705月赛]棋盘上的守卫(最小生成基环森林) 神题 我的想法是,每行每列都要有匹配且一个点只能匹配一个,于是就把格点和每行每列建点出来做一个最小生成树,但是不 ...
- 【BZOJ4883】[Lydsy2017年5月月赛]棋盘上的守卫 KM算法
[BZOJ4883][Lydsy2017年5月月赛]棋盘上的守卫 Description 在一个n*m的棋盘上要放置若干个守卫.对于n行来说,每行必须恰好放置一个横向守卫:同理对于m列来说,每列 必须 ...
- BZOJ4883: [Lydsy1705月赛]棋盘上的守卫(最小环套树森林&优化定向问题)
4883: [Lydsy1705月赛]棋盘上的守卫 Time Limit: 3 Sec Memory Limit: 256 MBSubmit: 475 Solved: 259[Submit][St ...
- 【BZOJ4883】 [Lydsy1705月赛]棋盘上的守卫(最小生成树,基环树)
传送门 BZOJ Solution 考虑一下如果把行,列当成点,那么显然这个东西就是一个基环树对吧. 直接按照\(Kruscal\)那样子搞就好了. 代码实现 代码戳这里
- [bzoj4883][Lydsy2017年5月月赛]棋盘上的守卫
来自FallDream的博客,未经允许,请勿转载, 谢谢. 在一个n*m的棋盘上要放置若干个守卫.对于n行来说,每行必须恰好放置一个横向守卫:同理对于m列来说,每列 必须恰好放置一个纵向守卫.每个位置 ...
随机推荐
- Storm 运行例子
1.建立Java工程 使用idea,添加lib库,拷贝storm中lib到工程中 2.拷贝wordcount代码 下载src包,解压找到 apache-storm-0.9.4-src\apache-s ...
- 20155206《网络对抗》Web安全基础实践
20155206<网络对抗>Web安全基础实践 实验后问题回答 (1)SQL注入攻击原理,如何防御 攻击原理:SQL注入攻击就是通过把SQL命令插入到Web表单递交或输入域名或页面请求的查 ...
- 2017-2018-4 20155317《网络对抗技术》EXP3 免杀原理与实践
2017-2018-4 20155317<网络对抗技术>EXP3 免杀原理与实践 一.问题回答 (1)杀软是如何检测出恶意代码的?杀软是通过代码特征比对得出的,将检查的代码和自己的特征库的 ...
- 《网路对抗》Exp8 WEB基础实践
20155336<网路对抗>Exp8 WEB基础实践 一.基础问题回答 1.什么是表单 表单是一个包含表单元素的区域,表单元素是允许用户在表单中(比如:文本域.下拉列表.单选框.复选框等等 ...
- SimpleDateFormat-时间格式化中的大小写字符
一.SimpleDateFormat: 这个类是用来格式化date类型数据为指定格式的时间的 使用的而时候,总是区分不清 yyyy-mm-dd yyyy-MM-dd 而使用不同的大小写字符格式化出来的 ...
- vim打开多窗口、多文件之间的切换
打开多个文件: 一.vim还没有启动的时候: 1.在终端里输入 vim file1 file2 ... filen便可以打开所有想要打开的文件 2.vim已经启动 输入 :e file 可以再打开一 ...
- 《Effective Java》学习笔记 —— 序列化
Java的序列化API提供了一个框架,用来将对象编码成一个字节流(序列化,serializing),并从字节流中重新创建对象(反序列化, deserializing). 第74条 谨慎地实现Seria ...
- flask入门小方法
我是在pycharm中写的.那么需要在Termainal中cd 到当前文件所在的文件夹,在运行python py文件名 一开始想用面向对象的方法来封装这些小模块,但发现在面向对象中要用到类属性,以及类 ...
- 如何干净的卸载docker
先上服务器环境信息: 卸载的原因: 宿主机过段时间就磁盘100%了,导致continart异常退出,后来找了很多解决方案,才发现是安装docker的时候有个配置文件错误(正常的应该是|Storage ...
- LintCode——Chalkboard XOR Game(黑板游戏)
黑板游戏: We are given non-negative integers nums[i] which are written on a chalkboard. Alice and Bob ta ...