题目链接:

https://vjudge.net/problem/POJ-3009

题目描述:

On Planet MM-21, after their Olympic games this year, curling is getting popular. But the rules are somewhat different from ours. The game is played on an ice game board on which a square mesh is marked. They use only a single stone. The purpose of the game is to lead the stone from the start to the goal with the minimum number of moves.

Fig. 1 shows an example of a game board. Some squares may be occupied with blocks. There are two special squares namely the start and the goal, which are not occupied with blocks. (These two squares are distinct.) Once the stone begins to move, it will proceed until it hits a block. In order to bring the stone to the goal, you may have to stop the stone by hitting it against a block, and throw again.


Fig. 1: Example of board (S: start, G: goal)

The movement of the stone obeys the following rules:

  • At the beginning, the stone stands still at the start square.
  • The movements of the stone are restricted to x and y directions. Diagonal moves are prohibited.
  • When the stone stands still, you can make it moving by throwing it. You may throw it to any direction unless it is blocked immediately(Fig. 2(a)).
  • Once thrown, the stone keeps moving to the same direction until one of the following occurs:
    • The stone hits a block (Fig. 2(b), (c)).

      • The stone stops at the square next to the block it hit.
      • The block disappears.
    • The stone gets out of the board.
      • The game ends in failure.
    • The stone reaches the goal square.
      • The stone stops there and the game ends in success.
  • You cannot throw the stone more than 10 times in a game. If the stone does not reach the goal in 10 moves, the game ends in failure.


Fig. 2: Stone movements

Under the rules, we would like to know whether the stone at the start can reach the goal and, if yes, the minimum number of moves required.

With the initial configuration shown in Fig. 1, 4 moves are required to bring the stone from the start to the goal. The route is shown in Fig. 3(a). Notice when the stone reaches the goal, the board configuration has changed as in Fig. 3(b).


Fig. 3: The solution for Fig. D-1 and the final board configuration

Input

The input is a sequence of datasets. The end of the input is indicated by a line containing two zeros separated by a space. The number of datasets never exceeds 100.

Each dataset is formatted as follows.

the width(=w) and the height(=h) of the board 
First row of the board 
... 
h-th row of the board

The width and the height of the board satisfy: 2 <= w <= 20, 1 <= h <= 20.

Each line consists of w decimal numbers delimited by a space. The number describes the status of the corresponding square.

0 vacant square
1 block
2 start position
3 goal position

The dataset for Fig. D-1 is as follows:

6 6 
1 0 0 2 1 0 
1 1 0 0 0 0 
0 0 0 0 0 3 
0 0 0 0 0 0 
1 0 0 0 0 1 
0 1 1 1 1 1

Output

For each dataset, print a line having a decimal integer indicating the minimum number of moves along a route from the start to the goal. If there are no such routes, print -1 instead. Each line should not have any character other than this number.

Sample Input

2 1
3 2
6 6
1 0 0 2 1 0
1 1 0 0 0 0
0 0 0 0 0 3
0 0 0 0 0 0
1 0 0 0 0 1
0 1 1 1 1 1
6 1
1 1 2 1 1 3
6 1
1 0 2 1 1 3
12 1
2 0 1 1 1 1 1 1 1 1 1 3
13 1
2 0 1 1 1 1 1 1 1 1 1 1 3
0 0

Sample Output

1
4
-1
4
10
-1 题意描述
给出棋盘,从起始位置到目标位置,如果能够到达,输出最短步数,不能到达输出-1
解题思路:
用DFS进行搜索,搜索时注意先判断是否可以击打,也就是该方向上至少存在一个空地,可以,则模拟向该方向行进,先判断是否走到目的地,如果走到,直接返回,否则看是否在走出边界
之前碰到一块砖,碰到则可以向砖之前的这一块空地上继续向下搜索。四个方向,挨个搜索即可。
代码实现:
#include<stdio.h>
#include<string.h>
int map[][];
int r,c,ex,ey,ans,sx,sy; void dfs(int x,int y,int s); int main()
{
int i,j;
while(scanf("%d%d",&c,&r), c+r != )
{
memset(map,,sizeof(map));
for(i=;i<=r;++i)
for(j=;j<=c;++j){
scanf("%d",&map[i][j]);
if(map[i][j]==){
sx=i;sy=j;
map[i][j]=;
}
if(map[i][j]==){
ex=i;ey=j;
map[i][j]=;
}
} ans=;
dfs(sx,sy,); if(ans==)
printf("-1\n");
else
printf("%d\n",ans);
}
return ;
}
void dfs(int x,int y,int s)
{
if(s > )
return; int tx,ty;
//up
tx=x-;
ty=y;
if(!map[tx][ty])
{
for(;tx>=;tx--)
{
if(tx==ex && ty==ey)
{
if(s < ans)
ans=s;
return;
}
if(map[tx][ty])
break;
}
if(map[tx][ty])
{
map[tx][ty]=;
dfs(tx+,ty,s+); map[tx][ty]=;
}
}
//right
tx=x;
ty=y+;
if(!map[tx][ty])
{
for(;ty<=c;ty++)
{
if(tx==ex && ty==ey)
{
if(s < ans)
ans=s;
return;
}
if(map[tx][ty])
break;
}
if(map[tx][ty])
{
map[tx][ty]=;
dfs(tx,ty-,s+); map[tx][ty]=;
}
}
//down
tx=x+;
ty=y;
if(!map[tx][ty])
{
for(;tx<=r;tx++)
{
if(tx==ex && ty==ey)
{
if(s < ans)
ans=s;
return;
}
if(map[tx][ty])
break;
}
if(map[tx][ty])
{
map[tx][ty]=;
dfs(tx-,ty,s+); map[tx][ty]=;
}
}
//left
tx=x;
ty=y-;
if(!map[tx][ty])
{
for(;ty>=;ty--)
{
if(tx==ex && ty==ey)
{
if(s < ans)
ans=s;
return;
}
if(map[tx][ty])
break;
}
if(map[tx][ty])
{
map[tx][ty]=;
dfs(tx,ty+,s+); map[tx][ty]=;
}
}
}

易错分析:

注意起步时步数为1

注意超出边界和走到目的地的情况与碰到砖块处理

Curling 2.0(DFS简单题)的更多相关文章

  1. 【POJ】3009 Curling 2.0 ——DFS

    Curling 2.0 Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 11432   Accepted: 4831 Desc ...

  2. POJ3009——Curling 2.0(DFS)

    Curling 2.0 DescriptionOn Planet MM-21, after their Olympic games this year, curling is getting popu ...

  3. Curling 2.0(dfs回溯)

    Curling 2.0 Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 15567   Accepted: 6434 Desc ...

  4. POJ3009 Curling 2.0(DFS)

    迷宫问题求最短路. 略有不同的是假设不碰到石头的话会沿着一个方向一直前进,出界就算输了.碰到石头,前方石头会消失,冰壶停在原地. 把这个当作状态的转移. DFS能够求出其最小操作数. #include ...

  5. Curling 2.0(dfs)

    Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 8795   Accepted: 3692 Description On Pl ...

  6. POJ 3009 Curling 2.0(DFS + 模拟)

    题目链接:http://poj.org/problem?id=3009 题意: 题目很复杂,直接抽象化解释了.给你一个w * h的矩形格子,其中有包含一个数字“2”和一个数字“3”,剩下的格子由“0” ...

  7. LeetCode Generate Parentheses 构造括号串(DFS简单题)

    题意: 产生n对合法括号的所有组合,用vector<string>返回. 思路: 递归和迭代都可以产生.复杂度都可以为O(2n*合法的括号组合数),即每次产生出的括号序列都保证是合法的. ...

  8. HDU1241&POJ2386 dfs简单题

    2道题目都差不多,就是问和相邻所有点都有相同数据相连的作为一个联通快,问有多少个连通块 因为最近对搜索题目很是畏惧,总是需要看别人代码才能上手,就先拿这两道简单的dfs题目来练练手,顺便理一理dfs的 ...

  9. test1.A[【dfs简单题】

    Test1.A Time Limit: 1000ms   Memory limit: 65536K  有疑问?点这里^_^ 题目描述 sdut 2274:http://acm.sdut.edu.cn/ ...

随机推荐

  1. Circles and Pi

    Circles and Pi Introduction id: intro-1 For as long as human beings exist, we have looked to the sky ...

  2. Objective-C与Swift混编

    1,创建项目(比如你先选择Objective-C) 2,项目创建成功后接着创建一个swift类  3,Xcode会弹出提示框问你需不需要创建桥接文件(桥接文件的名称默认为:项目名称-Bridging- ...

  3. HDU 1465 2045 已知结果往前推

    1465 不容易系列之一 Time Limit: 1000 MS Memory Limit: 32768 KB 64-bit integer IO format: %I64d , %I64u Java ...

  4. UniGUI的 TUniPageControl控件动态拖动tabsheet的实现方法

    https://blog.csdn.net/shuiying/article/details/54932518 实现可以用鼠标动态拖动tabsheet,共三个步骤: 1.在ServerModule中, ...

  5. KNIME + Python = 数据分析+报表全流程

    Python 数据分析环境 数据分析领域有很多可选方案,例如SPSS傻瓜式分析工具,SAS专业性商业分析工具,R和python这类需要代码编程类的工具.个人选择是python这类,包括pandas,n ...

  6. [WPF]为旧版本的应用添加触控支持

    之前做WPF开发时曾经遇到这样一个需求:为一个基于 .NET Framework 3.5开发的老旧WPF程序添加触控支持,以便于大屏触控展示. 接手之后发现这是一个大坑. 项目最初的时候完全没考虑过软 ...

  7. .net程序和管理员权限的一些事

    1.对某个方法设置管理员权限运行(未考证)(假的,必须以管理员权限启动,不然报错) [PrincipalPermission(SecurityAction.Demand, Role = @" ...

  8. 多用户在线人数监听(基于TomCat)

    服务器Servlet端 package com.sxt.mvcpro.servlet; import java.io.IOException; import java.util.HashSet; im ...

  9. 最小割(zjoi2011,bzoj2229)(最小割树)

    小白在图论课上学到了一个新的概念--最小割,下课后小白在笔记本上写下了如下这段话: "对于一个图,某个对图中结点的划分将图中所有结点分成两个部分,如果结点\(s,t\)不在同一个部分中,则称 ...

  10. D3.js的基础部分之选择集的处理 过滤器、选择集的顺序、each()和call()的应用(v3版本)

    选择集的处理 : 过滤器 有时候需要根据绑定数据对某选择集的元素进行过滤,例如某公司,只对id大于100的员工进行奖励.某学校只选拔身高超过170cm的学生等.类似这样的问题,需要根据条件获取选择集的 ...