10491 - Cows and Cars

Time limit: 3.000 seconds

http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=115&page=show_problem&problem=1432

In television contests, participants are often asked to choose one from a set of or doors for example, one or several of which lead to different prizes. In this problem we will deal with a specific kind of such a contest. Suppose you are given the following challenge by the contest presenter:

In front of you there are three doors. Two of them hide a cow, the other one hides your prize - a car.
After you choose a door, but before you open it, I will give you an hint, by opening one of the doors which hides a cow (I'll never open the door you have chosen, even if it hides a cow). You will then be able to choose if you want to keep your choice, or if you wish to change to the other unopened door. You will win whatever is behind the door you open.

In this example, the probability you have of winning the car is 2/3 (as hard as it is to believe), assuming you always switch your choice when the presenter gives you the opportunity to do so (after he shows you a door with a cow). The reason of this number (2/3) is this - if you had chosen one of the two cows, you would surely switch to the car, since the presenter had shown you the other cow. If you had chosen the car, you would switch to the remaining cow, therefore losing the prize. Thus, in two out of three cases you would switch to the car. The probability to win if you had chosen to stick with your initial choice would obviously be only 1/3, but that isn't important for this problem.

In this problem, you are to calculate the probability you have of winning the car, for a generalization of the problem above:

- The number of cows is variable

- The number of cars is variable (number of cows + number of cars = total number of doors)

- The number of doors hiding cows that the presenter opens for you is variable (several doors may still be open when you are given the opportunity to change your choice)

You should assume that you always decide to switch your choice to any other of the unopen doors after the presenter shows you some doors with cows behind it.

Input

There are several test cases for your program to process. Each test case consists of three integers on a line, separated by whitespace. Each line has the following format:

NCOWS NCARS NSHOW

Where NCOWS is the number of doors with cows, NCARS is the number of doors with cars and NSHOW is the number of doors the presenter opens for you before you choose to switch to another unopen door.

The limits for your program are:

1 <= NCOWS <= 10000

1 <= NCARS <= 10000

0 <= NSHOW < NCOWS

 

Output

For each of the test cases, you are to output a line containing just one value - the probability of winning the car assuming you switch to another unopen door, displayed to 5 decimal places.

Sample input

2 1 1
5 3 2
2000 2700 900

Sample output

0.66667
0.52500

0.71056

【历史介绍】

三门问题(Monty Hall problem)亦称为蒙提霍尔问题、蒙特霍问题或蒙提霍尔悖论,大致出自美国的电视游戏节目Let's Make a Deal。问题名字来自该节目的主持人蒙提·霍尔(Monty Hall)。参赛者会看见三扇关闭了的门,其中一扇的后面有一辆汽车,选中后面有车的那扇门可赢得该汽车,另外两扇门后面则各藏有一只山羊。当参赛者选定了一扇门,但未去开启它的时候,节目主持人开启剩下两扇门的其中一扇,露出其中一只山羊。主持人其后会问参赛者要不要换另一扇仍然关上的门。问题是:换另一扇门会否增加参赛者赢得汽车的概率?

【题意】

现在题目变成了:给你NCOWS只牛,NCARS辆车,NSHOW扇开启的门( NSHOW < NCOWS)

问:换门后赢得车的概率是?

【思路】

我们首先用分类讨论的思想得出三门问题的答案:

P(赢得汽车)

=P(最开始选的那扇门后是山羊)*P(在最开始选的那扇门后是山羊的情况下剩下那扇门后是车)+P(最开始选的那扇门后是车)*P(在最开始选的那扇门后是车的情况下剩下那扇门后是车)

=2/3*1+1/3*0=2/3

用专业术语来说,设A={最开始选的那扇门后是山羊},B={第二次选的门后是车}

则由全概率公式得:

那么对于此题,同样可以用上面的公式计算得出:

【完整代码】

/*0.018s*/

#include<stdio.h>

int main(void)
{
int cow, car, show, temp;
while (~scanf("%d%d%d", &cow, &car, &show))
{
temp = cow + car - 1;
printf("%.5f\n", (double)temp * car / ((temp + 1) * (temp - show)));
}
return 0;
}

【扩展阅读】

百度百科:三门问题

维基百科:蒙提霍尔问题

UVa 10491 Cows and Cars (概率&广义三门问题 )的更多相关文章

  1. UVa 10491 - Cows and Cars(全概率)

    链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...

  2. UVa 10491 - Cows and Cars

    題目:有m+n個們,每個門後面有牛或者車:有n仅仅牛,m輛車,你選擇当中1個: 然後打開当中的k你沒有選中的門後是牛的,問你改變選時得到車的概率. 說明:數學題,概率.全概率公式就可以: 說明:第10 ...

  3. UVA 10491 Cows and Cars (全概率公式)

    #include<bits/stdc++.h> #include<stdio.h> #include<iostream> #include<cmath> ...

  4. 10491 - Cows and Cars

    描述:要么全选择牛,要么选择一辆车和p-1头牛,那么剩下n+m-p道门可以选择,求选择p道门以后要选择到车的概率 #include <cstdio> int main() { //freo ...

  5. UVA10491 - Cows and Cars(概率)

    UVA10491 - Cows and Cars(概率) 题目链接 题目大意:给你n个门后面藏着牛.m个门后面藏着车,然后再给你k个提示.在你作出选择后告诉你有多少个门后面是有牛的,如今问你作出决定后 ...

  6. Cows and Cars UVA - 10491 (古典概率)

    按照题目的去推就好了 两种情况 1.第一次选择奶牛的门  概率是 a/(a+b) 打开c扇门后  除去选择的门 还剩 a-1-c+b扇门  则选到车的概率为b/(a-1-c+b) 2.第一次选择车的门 ...

  7. 紫书 例题 10-10 UVa 10491(概率计算)

    公式很好推,表示被高中生物遗传概率计算虐过的人 这个公式简直不需要动脑 #include<cstdio> using namespace std; int main() { double ...

  8. [uva 11762]Race to 1[概率DP]

    引用自:http://hi.baidu.com/aekdycoin/item/be20a91bb6cc3213e3f986d3,有改动 题意: 已知D, 每次从[1,D] 内的所有素数中选择一个Ni, ...

  9. UVA 10828 - Back to Kernighan-Ritchie(概率+高斯消元)

    UVA 10828 - Back to Kernighan-Ritchie 题目链接 题意:给图一个流程图,有结点的流程,每次进入下一个流程概率是均等的,有q次询问,求出每次询问结点的运行期望 思路: ...

随机推荐

  1. SQL Server 改变数据库的名字

    方法 1: alter database modiry name = new_database_name; ---------------------------------------------- ...

  2. 转:JavaScript函数式编程(三)

    转:JavaScript函数式编程(三) 作者: Stark伟 这是完结篇了. 在第二篇文章里,我们介绍了 Maybe.Either.IO 等几种常见的 Functor,或许很多看完第二篇文章的人都会 ...

  3. Java开发工具IntelliJ IDEA单元测试和代码覆盖率图解

    原文 http://www.cnblogs.com/xiongmaopanda/p/3314660.html Java开发工具IntelliJ IDEA使用教程:单元测试和代码覆盖率 本文将展示如何使 ...

  4. .Net缓存

    近期研究了一下.Net的缓存,据说可以提高系统的性能. .Net缓存分为两种HttpRuntime.Cache和HttpContext.Current.Cache 不过从网上查找资料,说两种缓存其实是 ...

  5. puppet svn集成

    puppet svn集成

  6. C#中关于DateTime的最大值和最小值

    System.DateTime的最小可能值:DateTime.MinValue.ToString()=0001-1-1 0:00:00 我们实际用的时候会指定一个默认值DateTime.Parse(& ...

  7. js的this几种用法

    1.普通的函数调用 此时指的是全局对象 function aaa(){ this.x=1;}aaa();alert(x) 2.对象内的方法this调用 此时指的是上一级对象 var aaa={ zz: ...

  8. SQL函数:字符串中提取数字,英文,中文,过滤重复字符(转)

    --提取数字 IF OBJECT_ID('DBO.GET_NUMBER2') IS NOT NULL DROP FUNCTION DBO.GET_NUMBER2 GO )) ) AS BEGIN BE ...

  9. EC读书笔记系列之3:条款5、条款6、条款7

    条款5:了解C++默默编写并调用哪些函数 记住: ★编译器可以(仅仅是可以,并非必须,仅当程序中有这样的用法时才会这么做!!!)暗自为class创建default构造函数,copy构造函数,copy ...

  10. Linux学习之nfs实例

    在对exports文件进行了正确的配置后,就可以启动NFS服务器了. 1.启动NFS服务器 为了使NFS服务器能正常工作,需要启动portmap和nfs两个服务,并且portmap一定要先于nfs启动 ...