ACM Computer Factory
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 5412   Accepted: 1863   Special Judge

Description

As you know, all the computers used for ACM contests must be identical, so the participants compete on equal terms. That is why all these computers are historically produced at the same factory.

Every ACM computer consists of P parts. When all these parts are present, the computer is ready and can be shipped to one of the numerous ACM contests.

Computer manufacturing is fully automated by using N various machines. Each machine removes some parts from a half-finished computer and adds some new parts (removing of parts is sometimes necessary as the parts cannot be added to a computer in
arbitrary order). Each machine is described by its performance (measured in computers per hour), input and output specification.

Input specification describes which parts must be present in a half-finished computer for the machine to be able to operate on it. The specification is a set of P numbers 0, 1 or 2 (one number for each part), where 0 means that corresponding part
must not be present, 1 — the part is required, 2 — presence of the part doesn't matter.

Output specification describes the result of the operation, and is a set of P numbers 0 or 1, where 0 means that the part is absent, 1 — the part is present.

The machines are connected by very fast production lines so that delivery time is negligibly small compared to production time.

After many years of operation the overall performance of the ACM Computer Factory became insufficient for satisfying the growing contest needs. That is why ACM directorate decided to upgrade the factory.

As different machines were installed in different time periods, they were often not optimally connected to the existing factory machines. It was noted that the easiest way to upgrade the factory is to rearrange production lines. ACM directorate decided to
entrust you with solving this problem.

Input

Input file contains integers P N, then N descriptions of the machines. The description of ith machine is represented as by 2 P + 1 integers Qi Si,1 Si,2...Si,P Di,1 Di,2...Di,P,
where Qi specifies performance,Si,j — input specification for part jDi,k — output specification for part k.

Constraints

1 ≤ P ≤ 10, 1 ≤ ≤ 50, 1 ≤ Qi ≤ 10000

Output

Output the maximum possible overall performance, then M — number of connections that must be made, then M descriptions of the connections. Each connection between machines A and B must be described by three positive numbers A B W,
where W is the number of computers delivered from A to B per hour.

If several solutions exist, output any of them.

Sample Input

Sample input 1
3 4
15 0 0 0 0 1 0
10 0 0 0 0 1 1
30 0 1 2 1 1 1
3 0 2 1 1 1 1
Sample input 2
3 5
5 0 0 0 0 1 0
100 0 1 0 1 0 1
3 0 1 0 1 1 0
1 1 0 1 1 1 0
300 1 1 2 1 1 1
Sample input 3
2 2
100 0 0 1 0
200 0 1 1 1

Sample Output

Sample output 1
25 2
1 3 15
2 3 10
Sample output 2
4 5
1 3 3
3 5 3
1 2 1
2 4 1
4 5 1
Sample output 3
0 0

Hint

Bold texts appearing in the sample sections are informative and do not form part of the actual data.

Source

Northeastern Europe 2005, Far-Eastern Subregion

题意:一个电脑由n个部件组成,如今有m台机器,每台机器能够将一个组装状态的电脑组合成还有一个状态。如(0, 1, 2)表示第一个部件未完毕。第二个部件完毕,第三个部件可完毕可不完毕。然后给出m个机器单位时间内能完毕的任务数以及详细的输入和输出状态。求整个系统单位时间内的电脑成品产量以及详细的机器间的传输关联。

题解:这题能够转换成最大流来做,一个机器的输出状态能够跟还有一个机器的输入状态关联,仅仅要它们的状态“equals”,然后再设置一个超级源点和汇点,再就能够用Dinic解题了。

#include <stdio.h>
#include <string.h>
#define maxn 55
#define inf 0x3fffffff struct Node {
int in[10], out[10]; // 拆点
int Q; // 容量
} M[maxn];
int G[maxn << 1][maxn << 1], que[maxn << 1], m, n, mp;
int G0[maxn << 1][maxn << 1], deep[maxn << 1], vis[maxn << 1]; bool equals(int a[], int b[]) {
for(int k = 0; k < n; ++k) {
if(a[k] != 2 && b[k] != 2 && a[k] != b[k])
return false;
}
return true;
} bool countLayer() {
int i, id = 0, now, front = 0;
memset(deep, 0, sizeof(deep));
deep[0] = 1; que[id++] = 0;
while(front < id) {
now = que[front++];
for(i = 0; i <= mp; ++i)
if(G[now][i] && !deep[i]) {
deep[i] = deep[now] + 1;
if(i == mp) return true;
que[id++] = i;
}
}
return false;
} int Dinic() {
int i, id = 0, maxFlow = 0, minCut, pos, u, v, now;
while(countLayer()) {
memset(vis, 0, sizeof(vis));
vis[0] = 1; que[id++] = 0;
while(id) {
now = que[id - 1];
if(now == mp) {
minCut = inf;
for(i = 1; i < id; ++i) {
u = que[i - 1]; v = que[i];
if(G[u][v] < minCut) {
minCut = G[u][v]; pos = u;
}
}
maxFlow += minCut;
for(i = 1; i < id; ++i) {
u = que[i - 1]; v = que[i];
G[u][v] -= minCut;
G[v][u] += minCut;
}
while(id && que[id - 1] != pos)
vis[que[--id]] = 0;
} else {
for(i = 0; i <= mp; ++i) {
if(G[now][i] && deep[now] + 1 == deep[i] && !vis[i]) {
que[id++] = i; vis[i] = 1; break;
}
}
if(i > mp) --id;
}
}
}
return maxFlow;
} int main() {
//freopen("stdin.txt", "r", stdin);
int i, j, sum, count;
while(scanf("%d%d", &n, &m) == 2) {
memset(G, 0, sizeof(G));
for(i = 1; i <= m; ++i) {
scanf("%d", &M[i].Q);
for(j = 0; j < n; ++j) scanf("%d", &M[i].in[j]);
for(j = 0; j < n; ++j) scanf("%d", &M[i].out[j]);
G[i][i + m] = M[i].Q;
}
// 连接出口跟入口
for(i = 1; i <= m; ++i) {
for(j = i + 1; j <= m; ++j) {
if(equals(M[i].out, M[j].in))
G[i + m][j] = inf;
if(equals(M[j].out, M[i].in))
G[j + m][i] = inf;
}
}
// 设置超级源点和超级汇点
for(i = 1; i <= m; ++i) { // 源点
G[0][i] = inf;
for(j = 0; j < n; ++j)
if(M[i].in[j] == 1) {
G[0][i] = 0; break;
}
}
mp = m << 1 | 1;
for(i = 1; i <= m; ++i) { // 汇点
G[i + m][mp] = inf;
for(j = 0; j < n; ++j)
if(M[i].out[j] != 1) {
G[i + m][mp] = 0; break;
}
}
// 备份原图
memcpy(G0, G, sizeof(G));
sum = Dinic();
count = 0;
// 推断哪些路径有流走过
for(i = m + 1; i < mp; ++i)
for(j = 1; j <= m; ++j)
if(G0[i][j] > G[i][j]) ++count;
printf("%d %d\n", sum, count);
// 输出机器间的关系
if(count)
for(i = m + 1; i < mp; ++i)
for(j = 1; j <= m; ++j)
if(G0[i][j] > G[i][j])
printf("%d %d %d\n", i - m, j, G0[i][j] - G[i][j]);
}
return 0;
}

2015.4.20

#include <stdio.h>
#include <string.h>
#include <vector> using std::vector; const int maxn = 102;
const int maxp = 10;
const int maxm = 2500;
const int inf = 0x3f3f3f3f;
const int sOut[maxp] = {};
int P, N;
struct Node2 {
int in[maxp], out[maxp];
int c;
} node[maxn]; int G[maxn][maxn], G0[maxn][maxn], queue[maxn];
bool vis[maxn]; int Layer[maxn]; bool countLayer(int s, int t) {
memset(Layer, 0, sizeof(Layer));
int id = 0, front = 0, now, i;
Layer[s] = 1; queue[id++] = s;
while(front < id) {
now = queue[front++];
for(i = s; i <= t; ++i)
if(G[now][i] && !Layer[i]) {
Layer[i] = Layer[now] + 1;
if(i == t) return true;
else queue[id++] = i;
}
}
return false;
}
// 源点,汇点,源点编号必须最小。汇点编号必须最大
int Dinic(int s, int t) {
int minCut, pos, maxFlow = 0;
int i, id = 0, u, v, now;
while(countLayer(s, t)) {
memset(vis, 0, sizeof(vis));
vis[s] = true; queue[id++] = s;
while(id) {
now = queue[id - 1];
if(now == t) {
minCut = inf;
for(i = 1; i < id; ++i) {
u = queue[i - 1];
v = queue[i];
if(G[u][v] < minCut) {
minCut = G[u][v];
pos = u;
}
}
maxFlow += minCut;
for(i = 1; i < id; ++i) {
u = queue[i - 1];
v = queue[i];
G[u][v] -= minCut;
G[v][u] += minCut;
}
while(queue[id - 1] != pos)
vis[queue[--id]] = false;
} else {
for(i = 0; i <= t; ++i) {
if(G[now][i] && Layer[now] + 1 == Layer[i] && !vis[i]) {
vis[i] = 1; queue[id++] = i; break;
}
}
if(i > t) --id;
}
}
}
return maxFlow;
} void init()
{
memset(G, 0, sizeof(G));
} bool canBeLinked(const int out[], const int in[])
{
int i;
for (i = 0; i < P; ++i) {
if (out[i] == 0 && in[i] == 1) break;
if (out[i] == 1 && in[i] == 0) break;
} return i == P;
} void getMap()
{
int u, v, c, i, j, k, cnt;
for (i = 1; i <= N; ++i) {
scanf("%d", &c);
G[i][N+i] = c; for (j = 0; j < P; ++j)
scanf("%d", &node[i].in[j]);
for (j = cnt = 0; j < P; ++j) {
scanf("%d", &node[i].out[j]);
if (node[i].out[j] == 1) ++cnt;
} if (canBeLinked(sOut, node[i].in)) G[0][i] = inf;
if (cnt == P) G[i+N][2*N+1] = inf;
} for (i = 1; i <= N; ++i) {
// connection
for (j = 1; j <= N; ++j) {
if (i != j && canBeLinked(node[i].out, node[j].in)) {
G[i+N][j] = inf;
// printf("...%d..%d...\n", i + N, j);
}
}
} memcpy(G0, G, sizeof(G));
/*
for (i = 1; i <= N; ++i) {
printf("...%d: ", i);
for (j = 0; j < P; ++j)
printf("%d%c", node[i].in[j], j == P - 1 ? '\n' : ' ');
for (j = 0; j < P; ++j)
printf("%d%c", node[i].out[j], j == P - 1 ? '\n' : ' ');
} for (i = 0; i <= 2 * N + 1; ++i) {
printf("%d: ", i);
for (j = 0; j <= 2 * N + 1; ++j) {
printf("%d%c", G[i][j], j == 2*N+1 ? '\n' : ' ');
}
}*/
} int solve()
{
int ret = Dinic(0, 2 * N + 1);
vector<int> vec;
int cnt = 0, i, j, u, v, c; for (i = 1; i <= N; ++i) {
for (j = 1; j <= N; ++j) {
if (G[i+N][j] < G0[i+N][j]) {
vec.push_back(i);
vec.push_back(j);
vec.push_back(G0[i+N][j] - G[i+N][j]);
}
}
} printf("%d %d\n", ret, vec.size() / 3);
for (i = 0; i < vec.size(); ) {
u = vec[i++];
v = vec[i++];
c = vec[i++];
printf("%d %d %d\n", u, v, c);
}
} int main()
{
while (~scanf("%d%d", &P, &N)) {
init();
getMap();
solve();
}
return 0;
}

POJ3436 ACM Computer Factory 【最大流】的更多相关文章

  1. POJ3436 ACM Computer Factory —— 最大流

    题目链接:https://vjudge.net/problem/POJ-3436 ACM Computer Factory Time Limit: 1000MS   Memory Limit: 655 ...

  2. poj-3436.ACM Computer Factory(最大流 + 多源多汇 + 结点容量 + 路径打印 + 流量统计)

    ACM Computer Factory Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 10940   Accepted:  ...

  3. POJ3436 ACM Computer Factory(最大流)

    题目链接. 分析: 题意很难懂. 大体是这样的:给每个点的具体情况,1.容量 2.进入状态 3.出去状态.求最大流. 因为有很多点,所以如果一个点的出去状态满足另一个点的进入状态,则这两个点可以连一条 ...

  4. POJ-3436 ACM Computer Factory 最大流 为何拆点

    题目链接:https://cn.vjudge.net/problem/POJ-3436 题意 懒得翻,找了个题意. 流水线上有N台机器装电脑,电脑有P个部件,每台机器有三个参数,产量,输入规格,输出规 ...

  5. poj3436 ACM Computer Factory, 最大流,输出路径

    POJ 3436 ACM Computer Factory 电脑公司生产电脑有N个机器.每一个机器单位时间产量为Qi. 电脑由P个部件组成,每一个机器工作时仅仅能把有某些部件的半成品电脑(或什么都没有 ...

  6. POJ3436 ACM Computer Factory(最大流/Dinic)题解

    ACM Computer Factory Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 8944   Accepted: 3 ...

  7. POJ-3436 ACM Computer Factory(网络流EK)

    As you know, all the computers used for ACM contests must be identical, so the participants compete ...

  8. Poj 3436 ACM Computer Factory (最大流)

    题目链接: Poj 3436 ACM Computer Factory 题目描述: n个工厂,每个工厂能把电脑s态转化为d态,每个电脑有p个部件,问整个工厂系统在每个小时内最多能加工多少台电脑? 解题 ...

  9. POJ-3436:ACM Computer Factory (Dinic最大流)

    题目链接:http://poj.org/problem?id=3436 解题心得: 题目真的是超级复杂,但解出来就是一个网络流,建图稍显复杂.其实提炼出来就是一个工厂n个加工机器,每个机器有一个效率w ...

随机推荐

  1. 我的wifi

    首先利用百度查找 怎么承载网络,托管网络的用户名和密码 . 1.以管理员身份运行命令提示符: 快捷键win+R→输入cmd→回车 2.启用并设定虚拟WiFi网卡: 运行命令:netsh wlan se ...

  2. ThinkPHP快捷函数

    16个快捷函数用法 1.A() 实例化控制器  格式:[资源://][模块/]控制器A($name,$layer='',$level='')@param string $name 资源地址   @pa ...

  3. xadmin集成ueditor

    from DjangoUeditor.models import UEditorField content = UEditorField(u"内容", imagePath=&quo ...

  4. django笔记(二)

    Model many-to-many可以通过through来定义详细信息. 表结构: property django可以用F和Q来配合查找,F可以用于同一个model不同field之间进行比较,可以对 ...

  5. C: 函数的名字是否受大小写影响?

    函数的名字大小写是否为同一函数? 不是,大小写不同,函数不同. 环境: gcc 版本 4.6.3 (Ubuntu/Linaro 4.6.3-1ubuntu5) Linux ubuntu 3.2.0-2 ...

  6. BZOJ 1877: [SDOI2009]晨跑( 最小费用最大流 )

    裸的费用流...拆点, 流量限制为1, 最后的流量和费用即答案. ------------------------------------------------------------------- ...

  7. Java 判断多级路径是否存在,不存在就创建

    第一种方案: /** * 是否创建目录 * @param path * @return */ public boolean isexitsPath(String path)throws Interru ...

  8. 【ant项目构建学习点滴】--(3)打包及运行jar文件

    <?xml version="1.0" encoding="UTF-8"?> <project default="compile&q ...

  9. Android下调用收发短信邮件等

    Android下调用收发短信邮件等 1,调web浏览器Uri myBlogUri = Uri.parse("http://xxxxx.com");returnIt = new In ...

  10. Android 如何引用com.android.internal.R目录下的资源

    Android 如何引用com.android.internal.R目录下的资源 项目需求 有一个资源跟系统上的一个资源相同,想要引用它:frameworks/base/core/res/res/dr ...