关于深度学习之中Batch Size的一点理解(待更新)
batch 概念:训练时候一批一批的进行正向推导和反向传播。一批计算一次loss
mini batch:不去计算这个batch下所有的iter,仅计算一部分iter的loss平均值代替所有的。
以下来源:知乎
作者:陈志远
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
(1) 不考虑bn的情况下,batch size的大小决定了深度学习训练过程中的完成每个epoch所需的时间和每次迭代(iteration)之间梯度的平滑程度。(感谢评论区的韩飞同学提醒,batchsize只能说影响完成每个epoch所需要的时间,决定也算不上吧。根本原因还是CPU,GPU算力吧。瓶颈如果在CPU,例如随机数据增强,batch size越大有时候计算的越慢。)
对于一个大小为N的训练集,如果每个epoch中mini-batch的采样方法采用最常规的N个样本每个都采样一次,设mini-batch大小为b,那么每个epoch所需的迭代次数(正向+反向)为 , 因此完成每个epoch所需的时间大致也随着迭代次数的增加而增加。
由于目前主流深度学习框架处理mini-batch的反向传播时,默认都是先将每个mini-batch中每个instance得到的loss平均化之后再反求梯度,也就是说每次反向传播的梯度是对mini-batch中每个instance的梯度平均之后的结果,所以b的大小决定了相邻迭代之间的梯度平滑程度,b太小,相邻mini-batch间的差异相对过大,那么相邻两次迭代的梯度震荡情况会比较严重,不利于收敛;b越大,相邻mini-batch间的差异相对越小,虽然梯度震荡情况会比较小,一定程度上利于模型收敛,但如果b极端大,相邻mini-batch间的差异过小,相邻两个mini-batch的梯度没有区别了,整个训练过程就是沿着一个方向蹭蹭蹭往下走,很容易陷入到局部最小值出不来。
总结下来:batch size过小,花费时间多,同时梯度震荡严重,不利于收敛;batch size过大,不同batch的梯度方向没有任何变化,容易陷入局部极小值。
(2)(存疑,只是突发奇想)如果硬件资源允许,想要追求训练速度使用超大batch,可以采用一次正向+多次反向的方法,避免模型陷入局部最小值。即使用超大epoch做正向传播,在反向传播的时候,分批次做多次反向转播,比如将一个batch size为64的batch,一次正向传播得到结果,instance级别求loss(先不平均),得到64个loss结果;反向传播的过程中,分四次进行反向传播,每次取16个instance的loss求平均,然后进行反向传播,这样可以做到在节约一定的训练时间,利用起硬件资源的优势的情况下,避免模型训练陷入局部最小值。
较小的batchsize,要设置小lr的原因之一,避免异常值对结果造成的扰巨大扰动。而对于较大的batchsize,要设置大一点的lr的原因则是大batch每次迭代的梯度方向相对固定,大lr可以加速其收敛过程。
关于深度学习之中Batch Size的一点理解(待更新)的更多相关文章
- 深度学习中 Batch Normalization
深度学习中 Batch Normalization为什么效果好?(知乎) https://www.zhihu.com/question/38102762
- 深度学习之Batch Normalization
在机器学习领域中,有一个重要的假设:独立同分布假设,也就是假设训练数据和测试数据是满足相同分布的,否则在训练集上学习到的模型在测试集上的表现会比较差.而在深层神经网络的训练中,当中间神经层的前一层参数 ...
- 深度学习基础系列(四)| 理解softmax函数
深度学习最终目的表现为解决分类或回归问题.在现实应用中,输出层我们大多采用softmax或sigmoid函数来输出分类概率值,其中二元分类可以应用sigmoid函数. 而在多元分类的问题中,我们默认采 ...
- 深度学习中 Batch Normalization为什么效果好
看mnist数据集上其他人的CNN模型时了解到了Batch Normalization 这种操作.效果还不错,至少对于训练速度提升了很多. batch normalization的做法是把数据转换为0 ...
- 深度学习之Batch归一化
前言 以下内容是个人学习之后的感悟,转载请注明出处~ Batch归一化 在神经网络中,我们常常会遇到梯度消失的情况,比如下图中的sigmod激活函数,当离零点很远时,梯度基本为0 ...
- 深度学习中batch normalization
目录 1 Batch Normalization笔记 1.1 引包 1.2 构建模型: 1.3 构建训练函数 1.4 结论 Batch Normalization笔记 我们将会用MNIST数 ...
- 深度学习—池化、padding的理解
1.池化层的理解 pooling池化的作用则体现在降采样:保留显著特征.降低特征维度,增大kernel的感受野.另外一点值得注意:pooling也可以提供一些旋转不变性. 池化层可对提取到的特征信息进 ...
- 深度学习(十五) TextCNN理解
以下是阅读TextCNN后的理解 步骤: 1.先对句子进行分词,一般使用“jieba”库进行分词. 2.在原文中,用了6个卷积核对原词向量矩阵进行卷积. 3.6个卷积核大小:2个4*6.2个3*6和2 ...
- 【深度学习】Precision 和 Recall 评价指标理解
1. 四种情况 Precision精确率, Recall召回率,是二分类问题常用的评价指标.混淆矩阵如下: 预测结果为阳性 Positive 预测结果为假阳性 Negative 预测结果是真实的 Tr ...
随机推荐
- 4G DTU的数据透传功能如何实现
准备将众山科技4G DTU进行数据透传之前,先将电脑串口连接到4G DTU串口上.如果是没有硬件串口的电脑,可以通过USB转RS232串口转换线进行连接. 连接成功后,按照说明书中提供的初始参数进行设 ...
- .netcore 自定义多种身份验证方法混用
背景: 公司项目有很多租户,每个租户的系统都可能调用我们的租户服务,原来的解决方案是为每个租户提供一个service.随着租户的增多,service也多了起来,但是每个service里的逻辑都是一样的 ...
- uniApp打卡日历
功能 滑动切换时间,打点功能,支持月周切换日历组件 这是一款支持滑动切换以及周模式和月模式切换功能的日历组件,可以设置打卡信息,自定义样式. 组件样式使用了sass所有需要项目中先安装node- ...
- centos 6.5 时间网络同步
安装 ntpdate sudo yum -y install ntp ntpdate 修改为上海时区 sudo vim /etc/sysconfig/clock ZONE = "Asia/S ...
- React react-redux props或state更新视图无法重新渲染问题
记录学习React时自己是如何挖坑把自己埋了的过程:children以及其它props被修改时相关组件无法重新渲染(做了两天) 父组件代码: class UserHome extends Compon ...
- SQL SERVER数据库常用命令
创建数据库: 命令:create database 数据库名: 示例:create database student: 删除数据库: 命令:drop database 数据库名: 示例:drop da ...
- 深入Python中的正则表达式
正则表达式应用的场景也非常多.常见的比如:搜索引擎的搜索.爬虫结果的匹配.文本数据的提取等等都会用到,所以掌握甚至精通正则表达式是一个硬性技能,非常必要. 正则表达式 正则表达式是一个特殊的字符序列, ...
- 微信告警如何配置?用Cloud Alert快速实现微信告警
在当下互联网蓬勃发展的时代里,微信已经成为了人们生活中不可分割的一部分.作为苦逼的运维人员,我们自然也得跟得上时代的步伐,将微信添加进告警的通知方式里.如果能够将告警消息第一时间发送到微信中,更清楚地 ...
- 45. 跳跃游戏 II
给定一个非负整数数组,你最初位于数组的第一个位置. 数组中的每个元素代表你在该位置可以跳跃的最大长度. 你的目标是使用最少的跳跃次数到达数组的最后一个位置. 示例: 输入: [2,3,1,1,4]输出 ...
- binary hacks读数笔记(装载)
1.地址空间 在linux系统中,每个进程拥有自己独立的虚拟地址空间,这个虚拟地址空间的大小是由计算机硬件决定的,具体地说,是由CPU的位数决定的.比如,32位硬件平台决定的虚拟地址空间大小:0--2 ...