• 题意:给你两个正整数\(x\)和\(y\),求两个正整数\(a\),\(b\),使得\(a+b=x\),\(a\)&\(b\)=\(y\),如果\(a\),\(b\),输出\(a\ xor \ b\),否则输出\(-1\).

  • 题解:根据位运算的基本性质,我们知道\(a\ xor \ b\)可以表示不进位的加法,而(\(a\)&\(b\))<<1可以表示相加后进位的\(1\),所以\(a+b=a\ xor \ b+2*(a\)&\(b)\).然而我们还要判断是否成立,首先\(a\ xor\ b\)一定不能是负数,其次\(a\ xor\ b\)&(\(a\)&b)一定等于0.

  • 代码:

    int t;
    ll x,y; int main() {
    //ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);
    t=read();
    while(t--){
    scanf("%lld %lld ",&x,&y);
    ll cnt=x-2*y;
    if(cnt<0 || (cnt&y)!=0) puts("-1");
    else printf("%lld\n",cnt);
    } return 0;
    }

牛客小白月赛28 D.位运算之谜 (位运算)的更多相关文章

  1. 牛客小白月赛28 J.树上行走 (并查集,dfs)

    题意:有\(n\)个点,\(n-1\)条边,每个点的类型是\(0\)或\(1\),现在让你选一个点,然后所有与该点类型不同的点直接消失,问选哪些点之后,该点所在的联通块最大. 题解: 因为选完之后两个 ...

  2. 【牛客小白月赛21】NC201605 Bits

    [牛客小白月赛21]NC201605 Bits 题目链接 题目描述 Nancy喜欢做游戏! 汉诺塔是一个神奇的游戏,神奇在哪里呢? 给出3根柱子,最开始时n个盘子按照大小被置于最左的柱子. 如果盘子数 ...

  3. 树的最长链-POJ 1985 树的直径(最长链)+牛客小白月赛6-桃花

    求树直径的方法在此转载一下大佬们的分析: 可以随便选择一个点开始进行bfs或者dfs,从而找到离该点最远的那个点(可以证明,离树上任意一点最远的点一定是树的某条直径的两端点之一:树的直径:树上的最长简 ...

  4. 牛客网 牛客小白月赛5 I.区间 (interval)-线段树 or 差分数组?

    牛客小白月赛5 I.区间 (interval) 休闲的时候写的,但是写的心情有点挫,都是完全版线段树,我的一个队友直接就水过去了,为啥我的就超内存呢??? 试了一晚上,找出来了,多初始化了add标记数 ...

  5. 牛客小白月赛8 - E - 诡异数字 数位DP

    牛客小白月赛8 - E - 诡异数字 题意: 求区间中,满足限制条件的数字的个数. 限制条件就是某些数字不能连续出现几次. 思路: 比较裸的数位DP, DP数组开一个dp[len][x][cnt] 表 ...

  6. 牛客小白月赛18 Forsaken给学生分组

    牛客小白月赛18 Forsaken给学生分组 Forsaken给学生分组 链接:https://ac.nowcoder.com/acm/contest/1221/C来源:牛客网 ​ Forsaken有 ...

  7. 牛客小白月赛18 Forsaken喜欢数论

    牛客小白月赛18 Forsaken喜欢数论 题目传送门直接点标题 ​ Forsaken有一个有趣的数论函数.对于任意一个数xxx,f(x)f(x)f(x)会返回xxx的最小质因子.如果这个数没有最小质 ...

  8. 牛客小白月赛19 E 「火」烈火燎原 (思维,树)

    牛客小白月赛19 E 「火」烈火燎原 (思维,树) 链接:https://ac.nowcoder.com/acm/contest/2272/E来源:牛客网 时间限制:C/C++ 1秒,其他语言2秒 空 ...

  9. 【牛客小白月赛21】NC201604 Audio

    [牛客小白月赛21]NC201604 Audio 题目链接 题目大意: 给出三点 ,求到三点距离相等的点 的坐标. 解析 考点:计算几何基础. 初中蒟蒻表示不会什么法向量.高斯消元..qwq 方法一: ...

随机推荐

  1. 【ORA】ORA-01078和LRM-00109 解决方法

    今天切换到asm实例的时候,发现是一个空实例,尝试启动实例,结果报错ORA-01078和LRM-00109 SQL> startupORA-01078: failure in processin ...

  2. kubernets之secret资源

    一  对于一些保密度比较高的文件,k8s又是如何存储的呢? 针对那些保密度比较高的配置文件,例如证书以及一些认证配置不能直接存储在configmap中,而是需要存储在另外一种资源中,需要对存储在里面的 ...

  3. +load和+initialize方法调用时机

    一.+load方法什么时候调用 +load方法会在runtime加载类.分类时调用(程序运行起来会先去加载调用+load 跟你引用没有引用其头文件没有关系).每个类.分类的+load,在程序运行过程中 ...

  4. Vitis下载安装尝试

    Vitis下载安装记录 一.下载安装 文章目录 一.下载安装 提示:以下是本篇文章正文内容,下面案例可供参考 一.下载安装 首先本次下载主要使用的是linux系统,所以我们先看一下Vitis支持的li ...

  5. Spring集成GuavaCache实现本地缓存

    Spring集成GuavaCache实现本地缓存: 一.SimpleCacheManager集成GuavaCache 1 package com.bwdz.sp.comm.util.test; 2 3 ...

  6. 2021 Duilib最新入门教程(一)Duilib简介

    目录 Duilib解决什么问题? 方案一.自己画界面 方案二.使用标准控件 方案三.使用Duilib框架 Duilib是什么? 先看下Duilib官方简介 再看下DirectUI 百度百科   比起介 ...

  7. Android事件分发机制二:viewGroup与view对事件的处理

    前言 很高兴遇见你~ 在上一篇文章 Android事件分发机制一:事件是如何到达activity的? 中,我们讨论了触摸信息从屏幕产生到发送给具体 的view处理的整体流程,这里先来简单回顾一下: 触 ...

  8. .NET 项目中的单元测试

    .NET 项目中的单元测试 Intro "不会写单元测试的程序员不是合格的程序员,不写单元测试的程序员不是优秀的工程师." -- 一只想要成为一个优秀程序员的渣逼程序猿. 那么问题 ...

  9. 前端面试之JavaScript的基本数据类型!

    前端面试之JavaScript的基本数据类型! JS的基本数据类型 数字 字符串 布尔值 JavaScript中有两个特殊的原始值: null (空) 和undefined (未定义), , 它们不是 ...

  10. Spring AOP介绍与使用

    Spring AOP介绍与使用 AOP:Aspect Oriented Programming 面向切面编程 OOP:Object Oriented Programming 面向对象编程 ​ 面向切面 ...