Google Kick Start 2020 Round B T4 Wandering Robot
题意
一个\(n \times m\)的矩形空间,起点是\((1,1)\),终点是\((n,m)\)。
假设当前位于\((x,y)\):
- 如果当前位于最后一行,那么下一步只能走向\((x,y+1)\)
- 如果当前位于最后一列,那么下一步只能走向\((x+1,y)\)
- 否则,以相等的概率走向\((x,y+1)\)和\((x+1,y)\)中的一个。
矩形空间中有一个小的矩形黑洞,用左上角和右下角的坐标表示,走进黑洞视为游戏失败,走到\((n,m)\)视为游戏成功,问游戏成功的概率。
解题思路
先不考虑黑洞。
对于\(1 \leq x < n, 1 \leq y < m\),走到\((x,y)\)一共有\(C_{x+y-2}^{x-1}\)种可能的路径,然后走每一条可能的路径的概率为\(\frac{1}{2^{x+y-2}}\),所以走到\((x,y)\)的概率是\(\frac{C_{x+y-2}^{x-1}}{2^{x+y-2}}\)。
但是\(n,m\)的取值最高可以到\(1e5\),如果不加处理会炸精度,如果使用\(\log\)处理就可以把数值压在能接受的范围内。再加上
\]
\(O(n)\)预处理出\(\log(i!)\)后就可以方便的计算\(P(x,y)\)了。
然后根据规则,最后一行和最后一列的概率要另外算。这里仅以最后一行为例,最后一列也是用同样的方法。
记走到\((x,y)\)的概率为\(P(x,y)\),那么如果\((x,y)\)位于最后一行,则\(P(x,y)=P(x,y-1)+\frac{1}{2}P(x-1,y)\)。然后\(P(1,n)\)很容易推出等于\(\frac{1}{2^{n-1}}\),所以这一行的概率就可以\(O(n)\)的递推出来。

假设上图中,黑色部分为黑洞,\((1,1)\)位于坐上角,那么很容易就可以得出游戏成功的概率为走到灰色格子的概率之和。将之前推导出的公式代入即可。
总结
早上七点的比赛差点错过了。前三题几乎都是直接秒,但是卡在了第四题。公式都推对了,但是没有想到炸精度怎么处理。脑海中出现了之前llg想在学校月赛搞用log处理大数的出题思路,但是看精度一直觉得不太行,然后就下班了,哪想到这就是正解。果然有时候就应该xjbg。
然后补题的时候又是因为担心精度问题用了long double,然后各种TLE,换成double就过了。
AC代码
#include<bits/stdc++.h>
using namespace std;
const int N = 2e5 + 5;
double lg[N], lstr[N], lstc[N];
int main()
{
#ifdef BACKLIGHT
freopen("in.txt", "r", stdin);
#endif
lg[0] = 0;
for (int i =1; i <= 2e5; ++i) lg[i] = lg[i-1] + log2(i);
int T;
scanf("%d", &T);
for (int Case = 1; Case <= T; Case ++) {
int n, m, l, r, u, d;
scanf("%d %d %d %d %d %d", &n, &m, &l, &u, &r, &d);
lstr[1] = pow(2, lg[1 + n - 2] - lg[1 - 1] - lg[n - 1] - 1 - n + 2);
for (int i = 2; i <= m; i++) {
lstr[i] = lstr[i-1] + 0.5 * pow(2, lg[i + (n-1)- 2] - lg[i - 1] - lg[(n-1) - 1] - i - (n-1) + 2);
}
lstc[1] = pow(2, lg[1 + m - 2] - lg[1 - 1] - lg[m - 1] - 1 - m + 2);
for (int i = 2; i <= n; i++) {
lstc[i] = lstc[i-1] + 0.5 * pow(2, lg[i + (m-1)- 2] - lg[i - 1] - lg[(m-1) - 1] - i - (m-1) + 2);
}
double ans = 0, tmp;
for (int i = 1; i <= l - 1; ++i) {
int D = l + d - i;
if(D > m) continue;
else if(D == m) {
ans += lstc[i];
}
else {
tmp = lg[i + D - 2] - lg[i - 1] - lg[D - 1] - i - D + 2;
ans += pow(2, tmp);
}
}
for (int i = 1; i <= u - 1; ++i) {
int R = r + u - i;
if(R > n) continue;
else if(R == n) {
ans += lstr[i];
}
else {
tmp = lg[i + R - 2] - lg[i - 1] - lg[R - 1] - i - R + 2;
ans += pow(2, tmp);
}
}
printf("Case #%d: %.12lf\n", Case, ans);
}
return 0;
}
Google Kick Start 2020 Round B T4 Wandering Robot的更多相关文章
- Google Kick Start 2020 Round B T1-3
这场题目除了最后一题稍微难了点,其他都是1眼题. T1 Bike Tour 没啥好说的,一个循环解决. T2 Bus Routes 没啥好说的,从第\(n\)的车站开始贪心取最晚的. T3 Robot ...
- Google Kick Start 2020 Round C
ac代码 A. Countdown for循环跑一跑,没啥好说的. B. Stable Wall 如果\(s_{i,j} \ne s_{i+1,j}\),那么说明\(s_{i+1,j}\)必须在\(s ...
- Google Kick Start Round G 2019
Google Kick Start Round G 2019 Book Reading 暴力,没啥好说的 #include<bits/stdc++.h> using namespace s ...
- Google Kick Start 2019 C轮 第一题 Wiggle Walk 题解
Google Kick Start 2019 C轮 第一题 Wiggle Walk 题解 题目地址:https://codingcompetitions.withgoogle.com/kickstar ...
- [C++]Store Credit——Google Code Jam Qualification Round Africa 2010
Google Code Jam Qualification Round Africa 2010 的第一题,很简单. Problem You receive a credit C at a local ...
- Google Code Jam 2010 Round 1C Problem A. Rope Intranet
Google Code Jam 2010 Round 1C Problem A. Rope Intranet https://code.google.com/codejam/contest/61910 ...
- kick start 2019 round D T3题解
---恢复内容开始--- 题目大意:共有N个房子,每个房子都有各自的坐标X[i],占据每个房子需要一定花费C[i].现在需要选择K个房子作为仓库,1个房子作为商店(与题目不同,概念一样),由于仓库到房 ...
- dp - Google Code jam Qualification Round 2015 --- Problem B. Infinite House of Pancakes
Problem B. Infinite House of Pancakes Problem's Link: https://code.google.com/codejam/contest/6224 ...
- Google Code jam Qualification Round 2015 --- Problem A. Standing Ovation
Problem A. Standing Ovation Problem's Link: https://code.google.com/codejam/contest/6224486/dashbo ...
随机推荐
- Python利用Twilio(国际)以及腾讯云服务做一些事情
短信服务验证服务已经不是什么新鲜事了,但是免费的手机短信服务却不多见,本次利用Python3.0基于Twilio和腾讯云服务分别来体验一下国际短信和国内短信接口. 首先,注册Twilio: www.t ...
- Maven骨架生成项目速度慢问题解决办法
在创建maven project时(使用了archetype),速度慢的令人不敢相信,从Idea的控制台可以看到信息停留在: [INFO] <<< maven-archetype-p ...
- 数电学习笔记之CMOS传输门工作原理
CMOS 传输门从结构上看是由一个PMOS和一个NMOS管组成 先简单粗略讲讲PMOS管和NMOS管导通与截止吧 首先我们MOS管有三个极,源极(S:Source).漏极(D:Drain)和栅极(G: ...
- QT QMdiArea 添加背景或添加背景图片失效问题
说起QMdirArea 这个控件与其他控件真所不同.... 这里记一下 我踩过的坑之一,,,,, QMdiArea 默认的背景 不符合我要求,,当时我就理所当然就想往常一样给它设置颜色 万万没想到.. ...
- day27:异常&反射
目录 认识异常处理 1.程序错误的种类 2.异常的分类 3.AssertionError(断言assert语句失败) 异常处理的基本语法 1.异常处理的基本语法 2.带有分支的异常处理 3.处理 ...
- C#LeetCode刷题之#874-模拟行走机器人(Walking Robot Simulation)
问题 该文章的最新版本已迁移至个人博客[比特飞],单击链接 https://www.byteflying.com/archives/4038 访问. 机器人在一个无限大小的网格上行走,从点 (0, 0 ...
- JS的数据属性和访问器属性
ECMA-262第5版在定义只有内部才用的特性(attribute)时,描述了属性(property)的各种特征.ECMA-262定义这些特性是为了实现javascript引擎用的,因此在javasc ...
- GaussDB基本操作
列出所有数据库 \l 切换数据库 \c ${databaseName} 列出当前数据库下的表 \d 列出表的所有字段 \d ${tableName} 查看指定表的基本情况 \d+ ${tableNam ...
- python 3.7 jupyter中安装 docx报错
from docx import Document报错: Import Error: No module named ‘exceptions‘ 解决办法: 使用下面的命令重新安装docx !pip i ...
- 在vue中使用echarts报错Cannot read property getAttribute of null
报错信息如下: 报错代码: mounted() { // ... this.drwaCharts() // drawCharts方法为自己定义的包含渲染 echarts 图表的方法 // ...} 之 ...