洛谷P3247 [HNOI2016]最小公倍数(分块 带撤销加权并查集)
题意
给出一张带权无向图,每次询问\((u, v)\)之间是否存在一条路径满足\(max(a) = A, max(b) = B\)
Sol
这题居然是分块。。想不到想不到。。做这题的心路历程大概可以写个800字的作文。
\(warning:\)下面的做法复杂度是错的。但是可以过
以下是attack的心路历程
考场上不会做,然后看了一眼题解发现可以对\(a\)分块。
怎么分呢?我们可以对边按\(a\)分块,然后把每个询问先按\(b\)排序后扔到对应的\(a\)所在的块内
这个时候\(b\)的限制就好搞了,每个块都是递增的,之前的块可以预处理之后排序,复杂度\(m\sqrt{m}\log m\)是可以接受的。
块内的呢?好像暴力就可以了,直接拿个启发式合并的可撤销带权并查集搞,维护一下路径最大值。复杂度也是\(m \sqrt{m} log m\),但是枚举的上界必须是\(M\)不然会wa(\(a\)相同\(b\)不相同),算了先交一发。。
然后交上去->80..
把T掉的数据下载下来发现居然有\(a\)全都相同的点。。。
emmmmmm,开始面向数据编程,每次询问的时候可以把每个块内询问\(a\)的最小值拿出来,按\(b\)排序之后双指针搞。
然后就过了,复杂度显然是不对的。只要来个\(a\)很小的数据就G了。
以下代码充满了attack对人生的思考,,,请谨慎观看
#include<bits/stdc++.h>
#define Pair pair<int, int>
#define MP(x, y) make_pair(x, y)
#define fi first
#define se second
//#define int long long
#define LL long long
#define Fin(x) {freopen(#x".in","r",stdin);}
#define Fout(x) {freopen(#x".out","w",stdout);}
using namespace std;
const int MAXN = 1e6 + 10, mod = 998244353, INF = 2e9 + 10;
const double eps = 1e-9;
template <typename A, typename B> inline bool chmin(A &a, B b){if(a > b) {a = b; return 1;} return 0;}
template <typename A, typename B> inline bool chmax(A &a, B b){if(a < b) {a = b; return 1;} return 0;}
template <typename A, typename B> inline LL add(A x, B y) {if(x + y < 0) return x + y + mod; return x + y >= mod ? x + y - mod : x + y;}
template <typename A, typename B> inline void add2(A &x, B y) {if(x + y < 0) x = x + y + mod; else x = (x + y >= mod ? x + y - mod : x + y);}
template <typename A, typename B> inline LL mul(A x, B y) {return 1ll * x * y % mod;}
template <typename A, typename B> inline void mul2(A &x, B y) {x = (1ll * x * y % mod + mod) % mod;}
template <typename A> inline void debug(A a){cout << a << '\n';}
template <typename A> inline LL sqr(A x){return 1ll * x * x;}
inline int read() {
char c = getchar(); int x = 0, f = 1;
while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
return x * f;
}
int N, M, Q, block, belong[MAXN], ll[MAXN], rr[MAXN], mx, ans[MAXN];
struct Edge {
int u, v, a, b, id;
bool operator < (const Edge &rhs) const {
return a == rhs.a ? b < rhs.b : a < rhs.a;
}
}E[MAXN], q[MAXN], st[MAXN], fuck1[MAXN];
vector<Edge> fuck2;
int comp(const Edge &x, const Edge &y) {
return x.b == y.b ? x.a < y.a : x.b < y.b;
}
vector<Edge> v[MAXN];
int vis[MAXN], num, fa[MAXN], mxa[MAXN], mxb[MAXN], siz[MAXN];
struct Sta {
int x, ta, tb, si;
};
Sta inst[MAXN];
int find(int x) {
return fa[x] == x ? x : find(fa[x]);
}
void Add(Edge &e) {
int x = e.u, y = e.v, a = e.a, b = e.b;
int fx = find(x), fy = find(y);
if(fx == fy) {
inst[++num] = {fx, mxa[fx], mxb[fx], siz[fx]};
inst[++num] = {fy, mxa[fy], mxb[fy], siz[fy]};
chmax(mxa[fx], a); chmax(mxb[fx], b);
return ;
}
if(siz[fx] > siz[fy]) swap(fx, fy), swap(x, y);
inst[++num] = {fx, mxa[fx], mxb[fx], siz[fx]};
inst[++num] = {fy, mxa[fy], mxb[fy], siz[fy]};
siz[fy] += siz[fx];
chmax(mxa[fy], a); chmax(mxb[fy], b);
chmax(mxa[fy], mxa[fx]); chmax(mxb[fy], mxb[fx]);
fa[fx] = fy;
}
void Erase(int tim) {
while(num > tim) {
Sta pre = inst[num--];
fa[pre.x] = pre.x; mxa[pre.x] = pre.ta; mxb[pre.x] = pre.tb; siz[pre.x] = pre.si;
}
}
void solve() {
int top = 0;
for(int i = 1; i <= N; i++) fa[i] = i, siz[i] = 1, mxa[i] = mxb[i] = -1;
for(int i = 1; i <= mx; i++) {
int now = 1; int gg = num, fucknum = 0, mn = INF; fuck2.clear();
for(auto &x : v[i]) chmin(mn, x.a);
for(int j = ll[i]; j <= M; j++)
if(E[j].a <= mn) fuck1[++fucknum] = E[j];
else fuck2.push_back(E[j]);
sort(fuck1 + 1, fuck1 + fucknum + 1, comp);
int cur = 0;
for(auto &x : v[i]) {
while(now <= top && st[now].b <= x.b) Add(st[now++]);
while(cur <= fucknum && fuck1[cur].b <= x.b) Add(fuck1[cur++]);
int tmp = num;
for(auto & j : fuck2) {
if(j.a <= x.a ) {
if(j.b <= x.b) {
Add(j);
}
} else break;
}
int fx = find(x.u), fy = find(x.v);
if(fx != fy || mxa[fx] != x.a || mxb[fx] != x.b) ans[x.id] = 2;
else ans[x.id] = 1;
Erase(tmp);
}
Erase(gg);
for(int j = ll[i]; j <= rr[i]; j++) st[++top] = E[j];
sort(st + 1, st + top + 1, comp);//�Ѿ�����İ�b�ź���ı�
}
}
signed main() {
// Fin(a); Fout(b);
N = read(); M = read(); block = sqrt(M * log(M));
for(int i = 1; i <= M; i++) E[i].u = read(), E[i].v = read(), E[i].a = read(), E[i].b = read();
E[++M] = {-1, -1, INF, INF};
sort(E + 1, E + M + 1);
for(int i = 1; i <= M; i++) belong[i] = (i - 1) / block + 1, chmax(mx, belong[i]);
for(int i = 1; i <= mx; i++) ll[i] = (i - 1) * block + 1, rr[i] = min(M, ll[i] + block - 1);//tag
Q = read();
for(int i = 1; i <= Q; i++) q[i].u = read(), q[i].v = read(), q[i].a = read(), q[i].b = read(), q[i].id = i;
sort(q + 1, q + Q + 1, comp);
for(int i = 1; i <= Q; i++) {
int pos = lower_bound(E + 1, E + M + 1, q[i]) - E;
v[belong[pos]].push_back(q[i]);
}
solve();
for(int i = 1; i <= Q; i++) puts(ans[i] == 1 ? "Yes" : "No");
return 0;
}
洛谷P3247 [HNOI2016]最小公倍数(分块 带撤销加权并查集)的更多相关文章
- 洛谷P3247 [HNOI2016]最小公倍数 [分块,并查集]
洛谷 思路 显然,为了达到这个最小公倍数,只能走\(a,b\)不是很大的边. 即,当前询问的是\(A,B\),那么我们只能走\(a\leq A,b\leq B\)的边. 然而,为了达到这最小公倍数,又 ...
- [洛谷P1196][NOI2002]银河英雄传说 - 带偏移量的并查集(1)
Description 公元五八〇一年,地球居民迁至金牛座α第二行星,在那里发表银河联邦创立宣言,同年改元为宇宙历元年,并开始向银河系深处拓展. 宇宙历七九九年,银河系的两大军事集团在巴米利恩星域爆发 ...
- 洛谷P2661 信息传递(最小环,并查集)
洛谷P2661 信息传递 最小环求解采用并查集求最小环. 只适用于本题的情况.对于新加可以使得两个子树合并的边,总有其中一点为其中一棵子树的根. 复杂度 \(O(n)\) . #include< ...
- BZOJ4025: 二分图【线段树分治】【带撤销的并查集】
Description 神犇有一个n个节点的图.因为神犇是神犇,所以在T时间内一些边会出现后消失.神犇要求出每一时间段内这个图是否是二分图.这么简单的问题神犇当然会做了,于是他想考考你. Input ...
- 【洛谷 P3402】 【模板】可持久化并查集
题目链接 可持久化并查集,就是用可持久化线段树维护每个版本每个节点的父亲,这样显然是不能路径压缩的,否则我们需要恢复太多状态. 但是这并不影响我们启发式合并,于是,每次把深度小的连通块向深度大的上并就 ...
- 洛谷P4698 [CEOI2011]Hotel [贪心,二分,并查集]
题目传送门 Hotel 题目描述 你经营着一家旅馆,这家旅馆有 n 个房间,每个房间有维护费用和容量.其中第 i 个房间的维护费用为 ci,容量为 pi 人. 现在有 m 个订单,每个订单有两个参 ...
- [洛谷P2024/POJ1182]食物链 - 带偏移量的并查集(2)
Description 动物王国中有三类动物 A,B,C,这三类动物的食物链构成了有趣的环形.A 吃 B,B吃 C,C 吃 A. 现有 N 个动物,以 1 - N 编号.每个动物都是 A,B,C 中的 ...
- [BZOJ 4025]二分图(线段树分治+带边权并查集)
[BZOJ 4025]二分图(线段树分治+带边权并查集) 题面 给出一个n个点m条边的图,每条边会在时间s到t出现,问每个时间的图是否为一个二分图 \(n,m,\max(t_i) \leq 10^5\ ...
- Codevs 3287 货车运输 2013年NOIP全国联赛提高组(带权LCA+并查集+最大生成树)
3287 货车运输 2013年NOIP全国联赛提高组 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 钻石 Diamond 传送门 题目描述 Description A 国有 n 座 ...
随机推荐
- Web发展简史(精编故事版,贤来给你讲故事)
Web发展简史 一. Web发展简史之隔壁老王的故事 有一个人叫隔壁老王,老王有一个爱好就是爱看电影.有一天,这个隔壁老王想看一部电影,可是电脑里面存储的电影太多了,他费了老大劲才从里面找到,觉得很不 ...
- SpringBoot+logback实现日志打印
logback介绍 logback是一款开源的日志框架,内核重写了,是基于log4j基础进行改良的.其官网为logback.qos.ch.logback在性能上有很大提升,拥有更多特性. logbac ...
- BaseDao优化
BaseDao优化2种方法 1. try { //读取配置文件,配置文件保存了数据库的东西 String path=”database.properties”; //创建实例化对象 Propertie ...
- Vue SSR不可不知的问题
Vue SSR不可不知的问题 本文主要介绍Vue SSR(vue服务端渲染)的应用场景,开发中容易遇到的一些问题,提升ssr性能的方法,以及ssr的安全性问题. ssr的应用场景 1.SEO需求 SE ...
- Elastic Job学习
从执行的结果来看,随着服务器的增加,分片的结果也不一样 当只有一台服务器的时候,所有分片都到这一台服务器上 当服务器增加到两台的时候,分片的结果是0 1 2 3 4和5 6 7 8 9 当服务器增加到 ...
- Python3.7 dataclass 介绍
Posted on 2018年6月28日 by laixintao 1 Comment Python3.7 加入了一个新的 module:dataclasses.可以简单的理解成“支持默认值.可以修改 ...
- linux中gdb的使用
断点 在代码的指定位置中断,使程序在此中断. break <function> 在进入指定函数时停住 break <linenum> 在指定行号停住. break ...
- python中执行该文件,就调用 mian 方法
代码: test.py import student def main(): st = student.student(1001, 'tommy', 18) st.sing() st.dance() ...
- Deploying Keras model on Tensorflow Serving--
keras训练了个二分类的模型.需求是把keras模型跑到 tensorflow serving上 (TensorFlow Serving 系统用于在生产环境中运行模型) keras模型转 tenso ...
- kubelet集群网络配置flannel(覆盖网络)
kubernetes本身并不会对跨主机容器的网络进行设置,这需要额外的工具来实现.一些常用的开源工具主要包括flanne.OpenvSwitch.Weave.Calico等,这里面最常用的是flann ...