SVM分类,就是找到一个平面,让两个分类集合的支持向量或者所有的数据(LSSVM)离分类平面最远;

SVR回归,就是找到一个回归平面,让一个集合的所有数据到该平面的距离最近。

SVR是支持向量回归(support vector regression)的英文缩写,是支持向量机(SVM)的重要的应用分支。

传统回归方法当且仅当回归f(x)完全等于y时才认为预测正确,如线性回归中常用(f(x)−y)2来计算其损失。

而支持向量回归则认为只要f(x)与y偏离程度不要太大,既可以认为预测正确,不用计算损失,具体的,就是设置阈值α,只计算|f(x)−y|>α的数据点的loss,如下图所示,阴影部分的数据点我们都认为该模型预测准确了,只计算阴影外的数据点的loss:

数据处理
preprocessing.scale()作用:
scale()是用来对原始样本进行缩放的,范围可以自己定,一般是[0,1]或[-1,1]。
缩放的目的主要是
1)防止某个特征过大或过小,从而在训练中起的作用不平衡;
2)为了计算速度。因为在核计算中,会用到内积运算或exp运算,不平衡的数据可能造成计算困难。

对于SVM算法,我们首先导入sklearn.svm中的SVR模块。SVR()就是SVM算法来做回归用的方法(即输入标签是连续值的时候要用的方法),通过以下语句来确定SVR的模式(选取比较重要的几个参数进行测试。随机选取一只股票开始相关参数选择的测试)。
svr = SVR(kernel=’rbf’, C=1e3, gamma=0.01)

kernel:核函数的类型,一般常用的有’rbf’,’linear’,’poly’,等如图4-1-2-1所示,发现使用rbf参数时函数模型的拟合效果最好。

C:惩罚因子

C表征你有多么重视离群点,C越大越重视,越不想丢掉它们。C值大时对误差分类的惩罚增大,C值小时对误差分类的惩罚减小。当C越大,趋近无穷的时候,表示不允许分类误差的存在,margin越小,容易过拟合;当C趋于0时,表示我们不再关注分类是否正确,只要求margin越大,容易欠拟合。如图所示发现当使用1e3时最为适宜。

gamma:

是’rbf’,’poly’和’sigmoid’的核系数且gamma的值必须大于0。随着gamma的增大,存在对于测试集分类效果差而对训练分类效果好的情况,并且容易泛化误差出现过拟合。如图发现gamma=0.01时准确度最高。

我们这次用的数据是公司内部不同的promotion level所对应的薪资

下面我们来看一下在Python中是如何实现的

import numpy as np
import matplotlib.pyplot as plt
import pandas as pd dataset = pd.read_csv('Position_Salaries.csv')
X = dataset.iloc[:, 1:2].values
# 这里注意:1:2其实只有第一列,与1 的区别是这表示的是一个matrix矩阵,而非单一向量。
y = dataset.iloc[:, 2].values

接下来,处理数据:

# Reshape your data either using array.reshape(-1, 1) if your data has a single feature
# array.reshape(1, -1) if it contains a single sample.
X = np.reshape(X, (-1, 1))
y = np.reshape(y, (-1, 1)) # Feature Scaling
from sklearn.preprocessing import StandardScaler
sc_X = StandardScaler()
sc_y = StandardScaler()
X = sc_X.fit_transform(X)
y = sc_y.fit_transform(y)

接下来,进入正题,开始SVR回归:

# Fitting SVR to the dataset
from sklearn.svm import SVR
regressor = SVR(kernel = 'rbf')
regressor.fit(X, y) # Predicting a new result
y_pred = regressor.predict(sc_X.transform(np.array([[6.5]])))
# 转换回正常预测值
y_pred = sc_y.inverse_transform(y_pred)

# 图像中显示
plt.scatter(X, y, color = 'red')
plt.plot(X, regressor.predict(X), color = 'blue')
plt.title('Truth or Bluff (SVR)')
plt.xlabel('Position level')
plt.ylabel('Salary')
plt.show()


# Visualising the SVR results (for higher resolution and smoother curve)
X_grid = np.arange(min(X), max(X), 0.01) # choice of 0.01 instead of 0.1 step because the data is feature scaled
X_grid = X_grid.reshape((len(X_grid), 1))
plt.scatter(X, y, color = 'red')
plt.plot(X_grid, regressor.predict(X_grid), color = 'blue')
plt.title('Truth or Bluff (SVR)')
plt.xlabel('Position level')
plt.ylabel('Salary')
plt.show()

[机器学习]回归--Support Vector Regression(SVR)的更多相关文章

  1. 机器学习技法:06 Support Vector Regression

    Roadmap Kernel Ridge Regression Support Vector Regression Primal Support Vector Regression Dual Summ ...

  2. 机器学习技法笔记:06 Support Vector Regression

    Roadmap Kernel Ridge Regression Support Vector Regression Primal Support Vector Regression Dual Summ ...

  3. [Scikit-learn] 1.4 Support Vector Regression

    SVM算法 既可用于回归问题,比如SVR(Support Vector Regression,支持向量回归) 也可以用于分类问题,比如SVC(Support Vector Classification ...

  4. 翻译——2_Linear Regression and Support Vector Regression

    续上篇 1_Project Overview, Data Wrangling and Exploratory Analysis 使用不同的机器学习方法进行预测 线性回归 在这本笔记本中,将训练一个线性 ...

  5. support vector regression与 kernel ridge regression

    前一篇,我们将SVM与logistic regression联系起来,这一次我们将SVM与ridge regression(之前的linear regression)联系起来. (一)kernel r ...

  6. 【Support Vector Regression】林轩田机器学习技法

    上节课讲了Kernel的技巧如何应用到Logistic Regression中.核心是L2 regularized的error形式的linear model是可以应用Kernel技巧的. 这一节,继续 ...

  7. [机器学习]回归--Decision Tree Regression

    CART决策树又称分类回归树,当数据集的因变量为连续性数值时,该树算法就是一个回归树,可以用叶节点观察的均值作为预测值:当数据集的因变量为离散型数值时,该树算法就是一个分类树,可以很好的解决分类问题. ...

  8. 【机器学习】从SVM到SVR

    注:最近在工作中,高频率的接触到了SVM模型,而且还有使用SVM模型做回归的情况,即SVR.另外考虑到自己从第一次知道这个模型到现在也差不多两年时间了,从最开始的腾云驾雾到现在有了一点直观的认识,花费 ...

  9. [Scikit-learn] 1.4 Support Vector Machines - Linear Classification

    Outline: 作为一种典型的应用升维的方法,内容比较多,自带体系,以李航的书为主,分篇学习. 函数间隔和几何间隔 最大间隔 凸最优化问题 凸二次规划问题 线性支持向量机和软间隔最大化 添加的约束很 ...

随机推荐

  1. 解决Chrome 70及以上版本的证书问题:Failed to load resource: net::ERR_CERT_SYMANTEC_LEGACY

    1.桌面必须要有Chrome 快捷方式 2.进入快捷方式属性 3.修改目标为:"C:\Program Files (x86)\Google\Chrome\Application\chrome ...

  2. Spring Boot的Maven配置

    <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/20 ...

  3. C语言函数指针与 c#委托和事件对比

    C语言: 函数指针可以节省部分代码量,写类似具有多态的函数,比如要比较最大值,如果不用函数指针就只能写比较某一类型比如int类型的max函数,这个max无法比较string的大小.函数指针的意义就不多 ...

  4. js 颜色选择插件

    COLPICK是一款非常的轻小,无需图片就可以实现颜色选择器的jquery插件,只用 JS 和 CSS 就实现了全部功能,而且非常直观,类似Photoshop的界面,使用方便.颜色的明暗很容易自定义, ...

  5. [solution]JZOJ-5838 旅游路线

    [solution] JZOJ-5838 旅游路线 Time Limits 1000ms,Memory Limits 128MB 题面 Description GZOI队员们到X镇游玩.X镇是一个很特 ...

  6. Linux编程之fork函数

    在Linux中,fork函数的功能就是在一个进程中创建一个新的进程,当前调用fork函数的进程就是产生的新进程的父进程,新进程在以下也称为子进程.在新进程生成之后就会在系统中开始执行. 函数原型:pi ...

  7. 解决Ubuntu自带编译器不好使问题

    解决Ubuntu自带编译器不好使问题 1.删除Ubuntu自带的tiny版本,这个版本用起来很别扭不好使. 2.安装full版本的vim 3.显示效果:full版本. 之前自带的版本:

  8. Oracle EBS数据定义移植工具:Xdf(XML Object Description File)

    转载自:http://www.orapub.cn/posts/3296.html Oracle EBS二次开发中,往往会创建很多数据库对象,如表.同义词.视图等,这些数据库对象是二次开发配置管理内容很 ...

  9. PSR-PHP开发规范(本文版权归作者:luluyrt@163.com)

    遵循PSR-4的自动加载 一.简介 首先这里要了解PSR,Proposing a Standards Recommendation(提出标准建议)的缩写,就是一种PHP开发规范,让我们研发出来的代码更 ...

  10. QEMU KVM Libvirt手册(5) – snapshots

    前面讲了QEMU的qcow2格式的internal snapshot和external snapshot,这都是虚拟机文件格式的功能. 这是文件级别的. 还可以是文件系统级别的,比如很多文件系统支持s ...